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Abstract

Single-cell genomic technologies are revealing the cellular composition, 
identities and states in tissues at unprecedented resolution. They have  
now scaled to the point that it is possible to query samples at the popu-
lation level, across thousands of individuals. Combining single-cell 
information with genotype data at this scale provides opportunities to 
link genetic variation to the cellular processes underpinning key aspects 
of human biology and disease. This strategy has potential implications 
for disease diagnosis, risk prediction and development of therapeutic 
solutions. But, effectively integrating large-scale single-cell genomic 
data, genetic variation and additional phenotypic data will require  
advances in data generation and analysis methods. As single-cell genet-
ics begins to emerge as a field in its own right, we review its current state 
and the challenges and opportunities ahead.
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context or identifying the cell states in which disease-associated vari-
ants modulate gene expression. Context-specific, high-resolution maps 
of expression across deeply phenotyped individuals will eventually be 
valuable for therapeutic development.

In this Review, we first briefly review single-cell genomics and 
human genetics, before focusing our attention on their intersection. 
Next, we review the first sc-eQTL studies, which demonstrate the fea-
sibility of applying bulk analysis approaches to single-cell data. We 
discuss unanticipated challenges that become relevant when compared 
with traditional studies using bulk RNA-seq. Next, we highlight newer 
approaches using the single-cell resolution provided by scRNA-seq 
data, such as mapping eQTLs that vary along continuous trajectories. 
Finally, we provide an overview of key future directions for the field, 
including new data types and integration strategies, and translation 
to clinical and therapeutic applications.

A brief review of contributing fields
We define single-cell genetics as the emerging field at the intersection 
of single-cell genomics and human genetics. The two contributing fields 
each have opportunities, challenges and bottlenecks. Here, we review 
relevant gaps and synergies at this intersection (Fig. 2) and introduce 
concepts that provide the necessary context for this Review.

Single-cell genomics
Over the past decade, single-cell genomics has rapidly demonstrated its 
value for studying human biology20. scRNA-seq is the most common of 
the single-cell modalities, and it has scaled quickly21 since its develop-
ment in 2009: from only eight cells in the original publication22 to over 
4 million cells in a recent study23. The most popular methods today for 
capturing RNA from single cells are droplet-based techniques24,25, which 
scale to tens of thousands of cells. Here, single cells are encapsulated 
inside microdroplets containing unique oligonucleotide-barcoded 
gel beads. When the cells are lysed, their mRNA molecules hybridize 
to the barcode and can be sequenced with a label corresponding to 
their cell of origin. Alternative methods are plate-based single-cell 
RNA-seq techniques (for example, Smart-seq3 (ref. 26)), in which cells 
are physically separated into 96-well or 384-well plates — with one cell 
per well — before library preparation and sequencing of full-length 
transcripts. Finally, in cases in which isolating viable single cells is tech-
nically challenging (for example, from frozen samples), single-nucleus 
RNA sequencing27 is a valuable alternative (Box 1).

In the past 10–15 years, technological improvements in single-cell 
data collection have produced new analytical considerations distinct 
from those for bulk RNA-seq data: for example, the massive number 
of profiles generated by a typical experiment, the sparsity of the data 
and a spectrum of technical artefacts. Novel methods have been devel-
oped to address these challenges. Single-cell-specific bioinformatics 
workflows such as Cell Ranger24 perform raw data processing tasks, 
for example, read-level quality control, assignment of reads to their 
cell barcodes and RNA molecules of origin (that is, ‘demultiplexing’), 
alignment to the reference genome and quantification. The data from 
an scRNA-seq experiment are typically represented as an integer matrix 
of the number of sequenced reads (or molecules, if unique molecular 
identifiers (UMI) were used) assigned to each gene in each cell28. For 
multi-individual pooled designs (particularly relevant for single-cell 
genetic studies), demultiplexing methods are necessary to assign 
cells to individuals of origin (for example, demuxlet29 and vireo30). 
After generating these count matrices, the next common stage in 
an scRNA-seq analysis workflow31–33 is pre-processing: for example, 

Introduction
Genome-wide association studies (GWASs) have uncovered hundreds 
of thousands of genetic variants associated with the risk of complex 
diseases and human traits. However, the majority of mechanisms link-
ing these variants to their biological impact still need to be character-
ized, especially for variants found in non-protein-coding regions of the 
genome1. Expression quantitative trait locus (eQTL) mapping, which 
estimates the association between genetic variants (particularly SNPs) 
and RNA levels of either local or distal genes, can link variants to the 
putative target genes that they regulate. In addition, mapping of eQTLs, 
or other molecular QTLs2, can help characterize the modes of action of 
disease-associated genetic variation. This approach can help identify 
the genes — and consequently, the pathways and processes — that may 
be involved in disease pathogenesis3, which is a critical early step in 
identifying opportunities for therapeutic intervention.

For eQTL mapping to provide disease insights, changes in RNA 
expression levels must be assayed in the specific cell types and condi-
tions relevant to the disease of interest, as the transcriptome and its regu-
latory mechanisms are dynamic and frequently context-dependent4.  
Seminal studies have demonstrated how eQTLs may only be detected 
in certain cell types5 or upon stimulation (that is, response eQTLs6,7). 
Additionally, recent efforts have assayed eQTLs across many human 
tissues; most notably, the Genotype-Tissue Expression Consortium8 
has mapped eQTLs in more than 50 human tissues obtained from 
post-mortem donors. These traditional eQTL studies use bulk tran-
scriptomes, which assess average expression levels across millions of 
cells from either whole tissues or cell-type samples. Using experimental 
(for example, fluorescence-activated cell sorting (FACS) and in vitro 
differentiation) and computational (for example, deconvolution) tools, 
bulk studies revealed some of the earliest insights into eQTLs specific 
to a cell type or transient state9–11. However, bulk studies are limited in 
their resolution of rare cell states or lack surface proteins with robust 
antibodies for FACS. Moreover, some transient or dynamic states can-
not be recapitulated in vitro. These limitations reduce the utility of bulk 
eQTLs for understanding the biology of disease-associated variants: 
although tissue-level eQTLs are enriched for disease-associated genetic 
variants from GWASs, only 20–50% of common disease alleles colocal-
ize with eQTLs12–14, which suggests that many variants influence biol-
ogy through cell-state-specific mechanisms that cannot be identified 
without fundamentally new approaches.

Single-cell genomic technologies, particularly single-cell tran-
scriptomics (that is, single-cell RNA sequencing (scRNA-seq)), offer 
a solution. As these approaches, which measure expression levels 
in individual cells, have become prevalent in recent years, they have 
revealed unanticipated cellular heterogeneity in many biological sys-
tems15–17. In addition, recent advances in technology, algorithms and 
experimental design have reduced the cost of scRNA-seq, making it 
more comparable to bulk RNA-seq and thus feasible to deploy across 
thousands of individuals18. This approach allows researchers to com-
bine the granularity of single-cell assays with the large sample sizes 
required for genetic association studies, enabling a new category of 
‘single-cell genetics’ studies that most prominently feature single-cell 
eQTL (sc-eQTL) studies.

The number of published sc-eQTL studies has more than doubled 
between January and December 2022 (Fig. 1), and international initia-
tives such as the single-cell eQTLGen Consortium (established in 2020 
(ref. 19)) are attempting to harmonize efforts in this space. sc-eQTL 
studies have started to tackle questions that could not be asked with 
bulk expression data, such as finding eQTLs that vary with the cellular 
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detection (and exclusion) of empty droplets, doublets and ambient RNA  
(which can confound associations with true single-cell expression 
measurements); normalization to adjust for total sequencing depth 
of cells (total number of reads); log transformation and correction for 
confounding factors including technical batch and cell cycle effects. 
Each of these steps is reviewed elsewhere31–33.

Subsequently, downstream analyses can be applied to the pre-
processed data. To reduce the computational burden, reduce noise and 
facilitate visualization, it is beneficial first to reduce the dimensionality 
of the data set. Feature selection reduces the data to, for example, highly 
variable genes34,35. Then, dimensionality reduction using linear methods 
such as principal component analysis (PCA) and non-negative matrix 
factorization is typically performed to aggregate signals across genes. 
These reduced dimensions can be used for visualization purposes 
either directly or via feeding to nonlinear transformations (for example, 
t-distributed stochastic neighbour embedding (t-SNE)36 and uniform 
manifold approximation and projection (UMAP)37), which can further 
reduce dimensionality to two dimensions without the information loss 
that would occur if linear constraints were maintained.

Additionally, reduced dimensions can be used for subsequent 
downstream analyses. These include cell-level analyses to identify cell  
states and their dynamic relationships (for example, clustering,  
cell-type annotation or trajectory inference) and gene-level analyses 
to characterize the transcriptional profiles of these states (for exam-
ple, differential expression or gene regulatory networks). Software to 
conduct these analyses is often available as part of extremely popular 
and comprehensive computational toolkits that create user-friendly 
single-cell workflows and consistent data objects. These toolkits are 
available in both R (for example, Seurat38 and scran39) or Python (for 
example, Scanpy40). Recommended methodologies and parameters 
for these steps are reviewed elsewhere31–33.

Impact of genetic variation on molecular phenotypes
In the two decades since the completion of the first human genome 
sequence41, rapid advances in sequencing technology have enabled 
increasingly larger genome sequencing projects and the characteri-
zation of human genetic variation across hundreds of thousands of 
individuals42–44. For common (population minor allele frequency 
>5%) and near-common (1–5%) variation, genotype arrays provide a 
popular solution to measure genotypes at approximately 500,000 
‘tagged’ loci systematically, and their low cost enables usage for large 
cohorts. DNA sequencing approaches additionally resolve rare (popu-
lation minor allele frequency <1%) and structural genetic variation 
and can be applied to either protein-coding regions and their flank-
ing sequences only (whole-exome sequencing) or the entire genome 
(whole-genome sequencing), using either cheaper short-read sequenc-
ing or more comprehensive, but substantially more expensive long-read 
approaches45,46.

In the setting of severe monogenic diseases, the application of 
DNA sequencing methods in both research and clinical settings has 
improved the rate of genetic diagnosis and disease gene discovery47,48. 
In addition, for complex traits and common diseases, GWASs have led to 
the identification of more than 400,000 genetic associations1 and the 
development of polygenic risk scores (PRSs), which combine association 
signals across the genome to predict the risk of disease of an individual49.

Studies of genetic variation can be combined with functional 
genomic assays to assess the potential biological impact of individual 
variants directly. The most popular approach is expression (e)QTL 
mapping, but similar frameworks can be used for DNA methylation, 

protein, histone modification, chromatin accessibility and splicing, 
reviewed elsewhere2. Because we expect most regulatory regions to 
be near their target, most QTL studies have focused on proximal (cis) 
mapping, for example, considering variants in and around the gene, 
methylation site or accessibility peak of interest. By contrast, trans-QTL 
mapping considers distal inter-chromosomal regulation but requires 
larger sample sizes50.

At present, the sample sizes of QTL studies are several orders of 
magnitude smaller than those of GWASs (for example, ~30,000 in the 
largest blood eQTL study51 versus >5 million individuals in the latest 
height GWASs52) owing to both cost considerations and the challenges 
of obtaining suitable tissue samples at the population scale. Fortu-
nately, the magnitude of genetic effects on molecular traits is generally 
much larger than that on disease risk, and thus these sample sizes are 
sufficient to identify them. Although traditional QTL studies have con-
sidered common SNPs, approaches exist to interrogate the role of rare 
variants on, for example, the expression level. However, these remain 
largely limited to the study of rare variation in individuals with extreme 
phenotypes (that is, outlier analyses53,54), with few exceptions55.

Linking QTL results to GWAS results can reveal the molecular func-
tion of disease-associated genetic variants, but this task remains nontriv-
ial56. To better understand the disease relevance of QTLs, methods have 
been developed to assess whether they coincide with disease loci (statis-
tical colocalization57) or whether their effect on an intermediate molec-
ular trait is causal for disease (two-step Mendelian randomization58),  
which have been reviewed elsewhere56. Transcriptome-wide association 
studies (TWASs) leverage eQTL information to impute gene expression 
for GWAS cases and controls and then perform direct association of 
traits and genes without directly profiling gene expression in every 
individual59,60.

Single-cell eQTL mapping using pseudo-bulk 
counts
Reduction in sequencing costs, well-established methodologies, pro-
cessing pipelines, multiplexing techniques and batch-effect-removal 
methods enable the application of single-cell genomics (particu-
larly transcriptomics) to large, genotyped cohorts. Furthermore, 
in single-cell genetics studies, using single-cell molecular profiling 
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Fig. 1 | Overview of single-cell expression quantitative trait locus studies. 
Single-cell studies published in the past 5 years. On the x axis is the date of 
publication, and on the y-axis is the number of unique individuals considered. 
The size of the dots represents the average number of cells per individual 
included in each study (when this number was not reported in this study,  
we estimated it as the total number of cells divided by the total number  
of individuals).
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and genotypes from the same individuals enables the evaluation 
of the effects of genetic variants on molecular phenotypes at the 
level of a cell. Here, we focus on sc-eQTL studies, which test associa-
tions between genetic variants and changes in gene expression at  
single-cell resolution.

Proof-of-concept and early cell-type studies
In a 2013 study61, sc-eQTLs were first mapped, motivated by the obser-
vation that averaging expression over many cells (as is done in bulk 
studies) would mask certain gene expression phenotypes such as 
transcriptional bursting, noise and dynamic expression fluctuation. 
Limited to WNT pathway genes in 15 lymphoblastoid cell lines, the 
demonstration of the authors that SNPs are associated with transcript 
variance and correlation across single cells, nevertheless, served as an 
initial proof of concept61. It was an early example highlighting the value 
of single-cell-resolved gene expression in genetic studies. Within the 
next 5 years, a few subsequent studies demonstrated the feasibility 
of transcriptome-wide sc-eQTL analyses29,62. These studies leveraged 
single-cell advances in assaying, demultiplexing and clustering cells and 
focused on well-delineated immune cell types within easily accessible 
human peripheral blood. Despite limited sample sizes (<50 individuals),  
these studies found tens to hundreds of eQTLs.

These studies established a preliminary approach for sc-eQTL 
analyses: measure single-cell gene expression in a genotyped cohort, 
cluster phenotypically similar cells and associate the aggregated 
expression of each gene in each cluster or cell type with genotypes 
of individuals at nearby variants. This approach, called the ‘pseudo-
bulk’ eQTL analysis, which we discuss further in the next section, had 
the advantage of building on existing bulk eQTL pipelines, making it 
computationally scalable to progressively larger cohorts (the current 
largest sc-eQTL study considers nearly 1,000 individuals63). Moreover, 
this approach was compatible with more sophisticated methods to 
organize single-cell phenotypes, such as bins along a trajectory or high-
resolution cell-state clusters, allowing the approach to be extended 
to more heterogeneous tissues and granular cell types, including 
immune cells63–68 (with a particular focus on T cells65,67,68), induced 
pluripotent stem (iPS) cells and differentiating iPS cells69–73 (including 
iPS cell-derived cardiomyocytes72, dopaminergic neurons70 and retinal 
 ganglion cells73), fibroblasts74 and brain cells75.

Methods originally devised for bulk eQTL mapping
Initial sc-eQTL studies largely used association methods originally 
devised for bulk eQTL mapping and other association tests between 
genotypes and continuous traits (Box 2). These methods assume that 
(1) the distribution of a phenotype across all samples is approximately 
Gaussian and (2) only one phenotype observation is available for each 
individual. These two assumptions do not necessarily hold for single-
cell expression data, which in general are much sparser, and contain 
multiple observations of each phenotype (that is, expression level 
from multiple cells) per individual. To overcome this discrepancy, 
many studies have relied on pseudo-bulk strategies, in which gene 

expression levels are aggregated across multiple cells from a given 
individual to mimic a single bulk sample. The expression of a gene in 
the pseudo-bulk sample is typically either the sum of the raw counts  
of the gene or the mean of the normalized expression of the gene across 
the cells of an individual in the cell type of interest (more precisely 
defined using scRNA-seq data).

As in bulk studies, covariates may be confounded with allelic 
effects. Several approaches used to detect and correct for covari-
ates affecting the expression of all (or a majority of) genes in bulk 
analyses can be extended to pseudo-bulk analyses. These include 
principal component analysis and probabilistic estimation of expres-
sion residuals (PEER), although the latter can perform suboptimally in 
some cases76,77. Single-cell studies have additional challenges, such as 
variable cell count per individual (inversely correlated with confidence 
in pseudo-bulk counts) or batch effects from multi-experiment study 
designs, which may create systematic differences in gene expression 
between experimental pools (Box 1). sc-eQTL models can increase 
power by accounting for these experimental factors with additional 
fixed or random effects70. There are many possible single-cell count 
normalization and aggregation and covariate correction strategies for 
pseudo-bulk sc-eQTL studies, which have been reviewed elsewhere78.

Although these studies used pseudo-bulk scRNA-seq data for 
eQTL mapping, contemporary studies also began to explore ways to 
use additional information offered by single-cell profiles. For example, 
in principle, these data allow one to measure the association between 
genetic variation and cell-to-cell gene expression variability (Fig. 3). 
Increased variability may reflect a lack of expression stability and 
increased propensity to enter extreme, pathogenic states79 or could 
uncover gene–environment (GxE) interactions with unmeasured envi-
ronments and contexts80. Although a handful of studies have proposed 
methods to map such ‘variance eQTLs’ from single-cell data (borrowing 
from similar approaches in other settings80–82), they had limited success 
owing to insufficient sample sizes and the confounding correlation 
between the mean and variance of the expression of a gene18,71. As 
the size of single-cell genetic studies grows, and more sophisticated 
methods become available, we envision that single-cell variance eQTL 
studies will become more tractable. These early attempts to leverage 
single-cell-resolution data in genetic association models, nonetheless, 
have laid the foundation for new perspectives on modelling eQTLs, as 
well, with single-cell-resolution data.

Single-cell-resolution eQTL modelling
Cell types have historically been defined on the basis of discrete morpho-
logical and functional categories, and clustering scRNA-seq data work 
towards a similar ontological goal. To this end, early eQTL studies also 
discretized and aggregated cells of the same cell type to facilitate statisti-
cal modelling and interpretation. However, high-resolution single-cell 
data often reveal heterogeneity within discrete populations, which 
motivates modelling eQTLs at single-cell resolution. Here, we describe 
the second generation of sc-eQTL models, which adopt continuous 
frameworks to leverage granular single-cell-resolution data.

Fig. 2 | Human genetics and single-cell genomics, a 20-year timeline. 
Fundamental genomic resources (red), genetic studies (blue), sequencing 
technologies (yellow) and statistical methods and software (green) have 
contributed to the current state of single-cell genomics and human genetics, 
including expression quantitative trait locus (eQTL) mapping studies.  
References 42–44,49,52 and 170–176 are for landmark studies and initiatives, 

respectively; refs. 22,24,27,57,58,124 and 177–183 are for technological and 
statistical advances, respectively; and refs. 5,19,51,61,63,155,184–189 are for  
eQTL mapping. GWAS, genome-wide association study; HCA, Human Cell Atlas; 
PRS, polygenic risk score; RNA-seq, RNA sequencing; snRNA-seq, single-nucleus 
RNA sequencing; TWAS, transcriptome-wide association study.
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Single-cell models improve cell-state-dependent eQTL 
mapping
Recently, high-resolution molecular measurements (for example, tran-
scriptomics) have been used to define and characterize single-cell pheno-
types. They reveal not only discrete lineages but also continuous 
phenotypes and intermediate states. For example, scRNA-seq studies 
of human T cells have identified a continuum of cytotoxicity spanning  
multiple T cell sublineages83,84. During development, cells have been 
assayed in vitro and in vivo in intermediate differentiation states, such 
as the mesendoderm state preceding the determination of mesoderm 
or endoderm fate69. These continuous phenotypes sometimes reflect 
disease processes or pathogenic environmental signals, such as fibro-
blasts transitioning towards inflammatory states owing to NOTCH3 
signalling in rheumatoid arthritis85. These examples highlight the need 
for more granular and continuous definitions of cell state (Box 3).

Once single-cell-resolution data are used to define these continu-
ous states, we can model how genetic regulation varies dynamically 
along these trajectories. Rather than treating individuals as obser-
vations, these models treat each cell as its own observation of the 
expression of a gene. For example, one common model architecture 
is a mixed-effects interaction model, which includes random effects to 
account for the non-independence of cells from the same individual 
(which, if left unaccounted for, can inflate the false-positive rate86)  
and interaction terms between cell state and genotype to model state-
dependent effects of genotype on expression65,87,88. These second- 
generation models map ‘dynamic’ eQTLs, assessing the effects of different  
genotype alleles on a trait that varies dynamically along a continuous 
axis. They have been successfully applied to continuous trajectories 
within differentiating iPS cells, T cells and other cell types65,87.

Other single-cell-resolution methods have adopted different 
approaches. For example, Gewirtz et al.89 used generative statistical 
(‘topic’) models to identify shared variation between genotypes and 
scRNA-seq profiles to identify both cis-eQTLs and trans-eQTLs across 
discrete cell types. As another example, Lu et al.90 used decomposition 
approaches to identify genetic effects on expression that are shared 
or specific to discrete cell types.

However, these early applications have also revealed the chal-
lenges and limitations of these models, including the non-normality  
of single-cell expression counts and computational tractability.  
We discuss these in detail in the following sections.

Sparsity and non-normality of single-cell expression data
Single-cell data are sparse (containing many 0s), owing to incomplete 
sampling as well as genuine biological variation in transcript pres-
ence within cells. As a result, single-cell measurements are not well 
described by the Gaussian distribution that linear regression-derived 
models assume. The large number of cells that are assayed together in 
bulk transcriptomes (and, to a certain extent, pseudo-bulk aggregated 
measurements) meant that normalized expression profiles could be 
approximated as Gaussian, but this does not hold for single-cell pro-
files91 (Box 2). Instead, discrete count distributions better describe 
these data. Despite their sparsity, single-cell profiles have been shown 
not to be zero-inflated92. Instead, a Poisson distribution offers an inter-
pretable model of single-cell counts91 that has been used in recent 
studies, including the Poisson mixed-effect regression of Nathan et al.65  
and the Poisson reduced-rank regression model of Fitzgerald et al.93. 
In some cases, more parametrized negative binomial or multino-
mial models may be appropriate alternatives depending on the gene  

Box 1

Experimental design trade-offs and considerations
As single-cell studies expand from hundreds or thousands of 
individuals to even larger cohorts, experimental design will have 
important implications on downstream analyses.

More individuals or more cells per individual?
Assuming budget constraints limit the total number of cells that can 
be assayed, researchers face a trade-off between maximizing the 
number of cells per individual or the total number of individuals. 
More unique, unrelated individuals will increase the power for genetic 
associations, especially with rarer variants. By contrast, more cells 
per individual may capture rarer cell types, although it increases the 
chance of doublets.

Multiplexing strategies
Large-scale single-cell experiments often multiplex samples in library 
preparation and sequencing and computationally assign cells to 
individuals a posteriori. This increases throughput and reduces cost 
and batch effects, while improving doublet detection. Yet choosing 
the optimal number of individuals per pool is not trivial. Combining 
more samples into one pool may mitigate batch effects, but can 
increase doublets and decrease sequencing coverage per individual.

Single cell versus single nucleus
Single-cell transcriptomic assays measure RNA either from whole 
cells (single-cell RNA sequencing) or from isolated nuclei (single-
nucleus RNA sequencing). The latter is preferred for frozen or hard-
to-dissociate tissues, where nuclei remain intact even under stress. 
The transcriptomic profiles are largely concordant, but there are 
inherent trade-offs. Single-nucleus RNA sequencing detects intronic 
pre-mRNA but cannot measure transcripts outside the nucleus, for 
example, mitochondrial genes. Cells that are more sensitive to the 
stress of dissociation, such as myocytes, are under-represented in 
single-cell RNA sequencing.

Scaling to large data sets
Scaling experiments to thousands of individuals requires logistical 
considerations. First, strategies to monitor the quality of cells and 
consistency of output (total number of cells, cell-type composition 
and doublet rate) across samples can minimize compounding effects 
of batch as well as human error. Analyses should consider scale to 
optimize memory and computations for increasingly large data sets 
by parallelizing, using graphics processing unit and storing data in 
sparse matrices.
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expression distributions94; null testing for P-value inflation can guide 
those choices.

Scalability and infrastructure as sample sizes grow
Modelling each cell separately — rather than aggregating cells into 
pseudo-bulk measurements — requires data sets on the order of hun-
dreds of thousands of cells, instead of hundreds of samples as in a 
(pseudo-)bulk study for the same number of individuals. One solu-
tion is grouping small groups of <10 phenotypically similar cells into 
‘meta-cells’95,96. This type of aggregation is less disruptive than grouping 
thousands of cells in a cluster, or even hundreds of cells in a pseudotime 
bin, and is still usable for eQTL modelling87.

Moreover, because effective sample size (number of unique individu-
als) is also expected to grow in future studies, methods must be scalable 
and compatible with high-speed computing and data storage infrastruc-
ture (Box 1). This is an area where sc-eQTL methods may learn from several 
previous genetics tools and infrastructures built to perform efficiently at 
scale, such as TensorQTL97 (a graphics processing unit implementation of 
Matrix eQTL98,99 for QTL mapping) and Hail (a cloud-based scalable imple-
mentation of several genetic tools100). Some sc-eQTL methods with more 
computationally expensive frameworks have already begun leveraging 
graphics processing units, such as scTBLDA89, mentioned earlier. Meth-
ods may also benefit from parallelization across computing resources,  
cloud-based systems and algebraic and numerical approximations.

New opportunities
Current paradigms of sc-eQTL mapping offer a limited window into the 
overall picture of genetics and cell function. New technological advances, 
larger-scale studies and corresponding analytical and computational 

methods will be required to expand our view. In particular, we envision 
studies exploring more molecular traits (beyond gene expression), more 
types of genetic variants (beyond common SNPs) and more information 
about the individuals (for example, demographics, disease history and 
environmental exposures). Moreover, we expect data to be collected 
from progressively more diverse cohorts, including data from individu-
als of different ancestries, from individuals with diseases and from many 
different (disease-relevant) human tissues. As these rich data become 
available, new analytical and computational methods will be required to 
integrate information across data modalities (for example, chromatin 
accessibility, expression and protein level) and resolutions (from cell to 
tissue to individual), model context-specific and dynamic effects and 
predict outcomes relevant to human biology and health.

New data types
The molecular impact of DNA alleles can result in variation at the level 
of cells, tissues or whole organisms. A recent shift in human genetics has 
moved from variant discovery to exploring this multifaceted impact101. 
For any molecular phenotype we can measure, we can integrate geno-
typic information to map QTLs associated with the phenotype. With 
early adoption of single-cell RNA-seq and robust analysis pipelines, 
sc-eQTLs have been an appealing area for the first single-cell genetic 
association studies. However, as we are able to more efficiently meas-
ure and computationally analyse more molecular traits at single-cell 
resolution, we can interrogate the genetics of more cell states and 
molecular processes at single-cell resolution (for example, single-cell 
chromatin accessibility QTLs102).

Multi-omics technologies allow us to assay more than one data 
modality within the same cell; for example, single-cell nucleosome, 

Box 2

Modelling considerations
Traditional genetic association testing for quantitative traits (be it 
gene expression or height) uses the linear mixed model. It tests for 
(additive) effects of the SNP on the phenotype while accounting for 
covariates and population structure. The effect size coefficient (β) 
provides both the magnitude and the direction of the effect.

The model in the figure (part A) assumes the phenotype (y) to 
follow a Gaussian distribution, which is largely recapitulated when 
using bulk transcriptomics (see the figure, part Ba).

However, single-cell RNA sequencing data follow a distribu-
tion better described by a Poisson distribution (see the figure,  
part Bb). The histograms show the expression levels of the SRGAP2 
gene in induced pluripotent stem cells from the same ~100 
individuals78, considering bulk counts across individuals (see the 
figure, part Ba) and single-cell counts across cells (see the figure,  
part Bb).
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methylation and transcription sequencing (scNMT-seq)103 measures 
chromatin accessibility, DNA methylation and expression, whereas 
cellular indexing of transcriptomes and epitopes by sequencing (CITE-
seq)104 measures expression and surface protein level. Integrating 
multiple modalities provides multiple views on the phenotypes of 
the same cells, enabling higher-resolution definition of cell states to 
model dynamic sc-eQTLs and offering multiple phenotypes to model 
relationships with genetic variants. This integration task has been 
described as ‘vertical integration’105, with cells being the common link 
across modalities.

Simultaneously, increasing sample sizes and newer technologies 
are making more classes of genetic variation amenable to analysis 
in single-cell cohorts, such as rare variants, repeats, insertions and 
deletions and structural variants. These have been associated with 
diseases106–108, but there has been limited analysis of their effect on 
(whole-tissue) molecular phenotypes109–111, and none at the single-cell 
level. More comprehensive and systematic association studies with 
single-cell models and precisely defined cell states may more fully 
capture the impact of these variants at the molecular level.

Diverse cohorts
Ideally, to understand the mechanisms underlying biology, we need 
to link genetics with molecular measurements and cell states in living 
humans under different natural perturbations. To do so, it is necessary 
to assay cells across thousands of individuals with known genotypes 
and at least partially characterized ‘environment’, including lifestyle 

(for example, smoking status, diet and pollution), demographics (for 
example, sex, age, geography and ethnicity) and other biomedical 
traits (for example, medical and vaccination history, disease state 
and progression and medications). Incorporating these different 
sources of variation into single-cell genetic studies provides a clearer 
picture of the interactions between genetics and factors underlying 
changes at the cellular level. Given the demonstrated relationships 
between these covariates and cell-state composition, incorporating 
these covariates into sc-eQTL models will provide richer context for 
dynamic eQTLs112. Cellular-resolved, large-scale and multifaceted 
data sets may also enable studies of GxE interactions and their effect 
on molecular traits.

In addition to environmental diversity, accounting for the effect 
of ancestry is important. Single-cell and genetic studies more generally 
have failed to include ancestral diversity for many reasons, including 
long-standing inequities and concentration of research funding in 
communities with predominant European ancestries113–115. Although 
diversity has been a growing priority in research studies, many institu-
tions still lack adequate infrastructure and community engagement 
programmes to equitably recruit participants116. Most studies continue 
to be conducted in European populations, and, as many have noted, 
genomic discoveries in Europeans are not always directly translatable 
to non-European individuals114. This limitation extends to sc-eQTL 
mapping studies, which largely consider samples of European ances-
tries. Yet, studying diverse populations is important, as they can have 
different causative alleles for diseases, different patterns of regulatory 
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variation and different cell states and active pathways, together altering 
the context in which disease alleles act117–119.

The sc-eQTL analysis in ancestrally diverse cohorts can help 
with fine-mapping and elucidate population-specific dynamic eQTLs 
and their relationship with disease, improving the translation of find-
ings of genetic studies. A few studies have already been conducted in 
non-European populations (in Peruvian65, Yoruban71 and African Ameri-
can82 populations), and large-scale cohorts from other geographical 
regions are being generated (for example, the Asian Immune Diversity 
Atlas, the African Ancestry Immune Cell Atlas and the Human Cell Map 
of Latin American Diversity). However, to maximize the findings that 
can be gleaned from these valuable data sets, it is essential to develop 
genetic algorithms for association testing, fine-mapping and meta-
analysis that are robust to multi-ancestry data, which are currently 
lacking.

Studying disease tissue context
Many diseases have tissue-specific manifestations, making it critical to 
study the effects of genetic variation on gene regulation in disease tissue 
context. However, sc-eQTL studies to date have been largely limited to 
easy-to-access tissues (for example, skin and blood) or cell lines (for 
example, iPS cells), with only a minority of studies considering other 
tissues, such as the brain75. This limits our ability to learn about gene 
regulation in disease-relevant tissue (for example, colon for ulcerative 
colitis, or pancreas for type 1 diabetes mellitus). First, some disease-
relevant cell types cannot be assessed at all in the absence of the relevant 
tissue. For example, neurodegenerative diseases such as Parkinson dis-
ease have proven especially difficult to study in part owing to the lack of 
access to data from the specific brain cells that are thought to be affected 
(dopaminergic neurons120). Second, even cell types that can be found, 
for example, in blood are found in a very different environment in tissue 
and thus may be subject to different context-specific genetic regulation. 
Finally, it is worth noting that tissues require handling, freezing and 
disaggregation, meaning that they are markedly more challenging to 
study. Moving forward, these are critical points that may be addressed 
by large-scale single-cell data generation projects such as the Human 
Cell Atlas15,121.

Although most current studies have focused on ‘healthy’ indi-
viduals, another avenue to study disease-relevant gene regulation is 
to obtain single-cell profiling data from genotyped individuals with 
diseases and other traits of interest. For example, Perez et al.64 mapped 
sc-eQTL in various blood cell types from patients with systemic lupus 
erythematosus. Additionally, the deficit of genotyped single-cell 
cohorts for hard-to-access tissues and people with a disease pheno-
type may be addressed by differentiating stem cells into cell types 
of interest and growing organoid models122. Recently, the concept of  
‘cell villages’ has been introduced to help scale stem cell studies for larger 
numbers of donor lines, providing power to explore gene regulation  
in disease-relevant cell types and genotypes123.

Another promising avenue is to study spatial patterns of eQTLs  
to understand how gene regulation may interact with tissue structure to 
lead to disease. Spatial transcriptomics can record the in situ locations 
of cells along with their RNA expression profiles at near-cellular reso-
lution124. These technologies are rapidly improving to become higher 
resolution, cheaper, higher fidelity and easier to implement125. In paral-
lel, new mixture modelling strategies for spatial gene expression have 
already extended traditional analyses such as differential expression 
to spatial transcriptomics126,127, and similar refinement may be useful 
for eQTL models19. With further development of computational tools 

and spatial technologies, there could be an opportunity to map eQTLs 
that vary across spatial coordinates.

Enabling disease-relevant discoveries
eQTLs provide insight into the modes of action of disease-associated 
genetic variation — implicating genes they regulate, the direction of 

Box 3

Cell types and states
Single-cell genomics has introduced a paradigm shift in our  
understanding and definitions of cellular identity, type and state.  
In traditional bulk assays, discrete populations of cells have been 
defined and sorted a priori on the basis of extracellular markers. 
These correspond to cell types, which may be defined as groups  
of cells from distinct, irreversible developmental lineages.

With single-cell transcriptomics, we can define cell populations 
after assaying the cells on the basis of their expression of key marker 
genes (see the figure). These populations are more granular than 
what could have been sorted on the basis of extracellular mark-
ers and reveal cell states: functionally specialized, often plastic, 
subpopulations of cells. These states can be discrete (for example, 
T helper cells) or continuous (for example, developmental states).

Single-cell resolution allows us to then define the most disease-
relevant populations of cells (which might be a whole cell type or 
might be a transient state).
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effect and cell states in which they have an effect — which has several 
important ramifications for understanding disease processes and, 
down the line, helping drug development.

Single-cell genetics for identifying disease-relevant cell types
Knowing the tissues, cell types and cell states most relevant to a disease 
phenotype can add to clinical understanding. With the development 
of sc-eQTL models that can identify cell-state-specific genetic effects 
on gene expression, we can now integrate existing knowledge about 
disease alleles with their predicted regulatory targets in each cellular 
context. This enables inference of the contexts in which the disease 
alleles may be most disruptive. Methods have been developed for 
complex traits affected by many genetic variants to integrate bulk 
tissue-specific eQTL effects and to prioritize the most relevant tis-
sue128,129. For example, Kundu et al.130 used eQTL mapping to fine-map 
causal disease-associated variants, finding, among other things, that 
the ITGA4 locus for inflammatory bowel disease is active in monocytes. 
Single-cell-resolved eQTL maps will provide further granularity to these 
types of studies by enabling subcell-type resolution. For example, 
two distinct studies recently combined sc-eQTLs in (iPS cell-derived) 
dopaminergic neurons from 215 individuals70 with GWAS results for 
Parkinson disease and schizophrenia, respectively, to confirm exist-
ing and identify novel genes that are likely to have a role in Parkinson 
disease and schizophrenia aetiology, using a Mendelian randomization 
approach112,131.

Other methods using single-cell data can estimate more precise 
cell types relevant to disease, using variant-gene expression asso-
ciations and other strategies to link disease-associated variants to 
genes132–134 (Fig. 4). Some methods, such as single-cell disease relevance 

score (scDRS), estimate association of individual cells with the poly-
genic disease risk on the basis of their expression of genes proximal 
to GWAS variants135. This represents a step towards translating a PRS 
framework to single cells, aggregating SNP effects to predict heritable 
trait risk. Single-cell molecular QTL results may help construct similar 
predictors by further taking into account cell-type-specific regulatory 
effects of the genetic variants. For example, CONTENT (which stands for 
context-specific genetics) is an extension of transcriptome-wide asso-
ciation study that uses context-specific eQTLs from either single-cell or 
bulk analysis to identify genes with context-specific expression asso-
ciated with a disease, enabling quantification of the context-specific 
portion of disease heritability136.

Moreover, these methods may benefit from more granular, 
single-cell data. When CONTENT was used to identify genes associated 
with systemic lupus erythematosus on the basis of eQTLs mapped in 
single-cell peripheral blood cells, it found twice as many genes when 
state-specific eQTLs were mapped using a single-cell-resolution 
decomposition method compared with pseudo-bulk meta-analysis64. 
This result highlights the importance of single-cell-resolution eQTL 
mapping approaches.

In addition to finding disease-associated genes, which may point 
to key pathways and drug targets, future extensions of similar methods 
may narrow down the cell context in which disease-associated genetics 
influences gene expression. This focus can also help us identify cell 
states to target with gene editing or other therapeutic molecules137.

Future potential in the clinic
Importantly, although recent studies have shown that drug targets with 
genetic evidence are twice as likely to prove clinically effective138,139, 
the translation of sc-eQTL results to the clinic is not a reality at pre-
sent, and many critical steps are required to operationalize these data. 
Nonetheless, efforts using well-established data types provide hope 
that sc-eQTLs, too, may eventually have clinical utility.

First, complex disease heterogeneity may reflect underlying 
genetic and mechanistic differences. Genetic (PRSs140,141) and expression- 
based approaches (bulk142,143 and single cell144–148) have been used 
independently to stratify patients on the basis of disease risk and 
into disease subtypes. A recent study128 developed a method to  
prioritize disease-relevant tissues through Bayesian mixture model-
ling of the trait associations of tissue-specific bulk eQTL variants. 
They used this method to identify subgroups of patients with high 
body mass index whose genetic predisposition was most relevant 
to gene regulation in either brain, adipose tissue or muscle128. Using  
sc-eQTL studies and adapting bulk tissue methods may achieve similar 
results at cell-type and subcell-type resolution149, potentially allow-
ing patients with the same clinical disease to be stratified into sub-
groups with different disease prognoses and optimal therapeutic  
strategies.

Second, incomplete functional annotation of variants limits the 
utility of DNA sequencing to provide accurate diagnoses for patients 
with monogenic diseases. Functional genomic analysis of clinical 
tissue samples increases diagnostic rates above those provided by 
DNA sequencing methods alone, with bulk RNA-seq of disease-relevant 
patient tissue samples in particular now well-established as substan-
tially improving diagnosis rates by identifying disease-causing changes 
in gene expression or splicing150–152, leading to its incorporation into 
both research and clinical diagnostic workflows153,154. We can thus 
expect single-cell methods to increase diagnosis rates in two ways: 
first, by providing more accurate annotation of the genomic regions 
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involved in the biology of specific disease-relevant cell states, lead-
ing to better in silico functional prediction for variants, and second, 
through direct application to patient tissue to identify variants affect-
ing transcript structure or expression in cell types that are rare in 
accessible tissue.

Conclusions and perspective
This article provides an overview of the nascent field of single-cell 
genetics, in which single-cell resolution molecular readouts are col-
lected from hundreds or thousands of individuals and analysed in 
tandem with matched genotype data. sc-eQTL mapping, in which the 

Glossary

Allele
One of two or more alternative DNA 
sequences occurring at a particular 
genomic locus.

Ambient RNA
Free-floating RNA captured in a single-
cell RNA sequencing droplet or other 
reaction compartment.

Cell-type annotation
Manual or algorithmic approach to 
assign labels (corresponding to cell type) 
to unbiasedly identified cell clusters.

Cell villages
Cell lines derived from multiple donors 
cultured and differentiated together in 
a single dish. These are distinct from 
‘uni-cultures’, in which each cell line 
is cultured independently. This makes 
the strategy particularly valuable for 
population-scale studies.

Clustering
Algorithmic approach to group cells 
into clusters, which are groups of similar 
cells based on their transcriptomes.

Colocalization
Statistical methods that aim to estimate 
the probability that the same genetic 
variant is causal for two different traits, 
for example, an organismal trait (for 
example, a disease in a genome-wide 
association study) and a molecular trait 
(for example, the expression level of a 
given gene in an expression quantitative 
trait locus study).

Doublets
Two or more cells (also called multiplet) 
captured and processed in the same 
droplet.

Fine-mapping
The process of localizing association sig-
nals to causal variants using statistical, 
bioinformatic or functional methods.

Fluorescence-activated cell 
sorting (FACS)
Experimental technique to select 
cells based on physical and chemical 
characteristics of individual cells. Single 
cells from a sample are suspended 
in a fluid and then injected into an 
instrument that uses lasers to detect 
cell morphology and fluorescently 
labelled features and sort cells based 
on these qualities.

Gene regulatory network 
(analysis)
A gene regulatory network is a set of 
interacting regulatory elements and 
genes that jointly control expression 
patterns that dictate a specific cell 
function.

Genome-wide association 
studies (GWASs)
Statistical procedure to identify 
associations between individual genetic 
variants and variation in continuous 
traits (for example, height) or risk of 
disease (for example, type 2 diabetes).

Interaction
Interplay between different sources of 
variation (for example, genetic variation 
and environmental exposure — GxE) 
that results in a joint effect on the trait of 
interest beyond the individual additive 
effects.

Mendelian randomization
Statistical method using measured 
variation in an instrumental variable 
(for example, a genetic variant) to test 
the causal effect of an exposure (for 
example, the expression of a gene) on 
an outcome (for example, a common 
trait or disease).

Minor allele frequency
Population frequency for the least 
common (that is, minor) alleles within 
the population of interest.

Non-negative matrix 
factorization
Dimensionality reduction method to 
decompose a matrix of non-negative 
values into two matrices of vectors 
capturing the essential features of a 
data set. Unlike principal component 
analysis, non-negative matrix 
factorization components are not 
orthogonal.

Polygenic risk scores (PRSs)
Quantification of total risk of an 
individual for a given disease based  
on genetic contributors alone. PRSs are 
calculated by summing the dosage of 
an individual of thousands of variants 
weighted by the strength of their 
association with the trait (as estimated 
from a genome-wide association study 
for that trait).

Principal component 
analysis (PCA)
Dimensionality reduction method 
to identify main orthogonal axes of 
variation in a dataset, called ‘principal 
components’.

Pseudotime
Approximate ordering of cells along a 
latent dimension based on single-cell 
RNA sequencing data. The ordering 
represents sequential changes along 
a transition (for example, during cell 
differentiation).

Response eQTL
An association between a genetic 
variant and RNA level (that is, an 
expression quantitative trait locus) that 
only becomes apparent when the cells 
the RNA is measured in are stimulated 
in some way (for example, immune 
activation).

Single-cell phenotypes
Cell characteristics (for example, 
function, gene expression and position 
along a transition) that can be estimated 
using single-cell-resolved molecular 
profiling (for example, single-cell RNA 
sequencing).

Sparse
Containing a large number of 0s.  
In single-cell data, sparsity is due to  
the combination of inefficient sampling 
and true absence of expression.

Trajectory inference
Also known as trajectory mapping. 
A computational technique used in 
single-cell data to determine the form of 
a dynamic process experienced by cells 
(for example, lineage specification and 
differentiation) and then arrange cells 
based on their progression through the 
process, usually using a pseudotime 
approach.

Transcriptome-wide 
association studies (TWASs)
Statistical method that uses estimated 
associations between variants and 
gene expression (for example, 
from expression quantitative trait 
locus studies) to infer expression 
for all individuals in a genome-wide 
association study and to identify 
associations between genes and  
traits/diseases.

Unique molecular 
identifiers (UMI)
Complex indices added to sequencing 
libraries before any PCR amplification 
steps, enabling the accurate 
bioinformatic identification of PCR 
duplicates. They are common in many 
single-cell RNA sequencing protocols.
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effects of genetic variants on RNA levels are evaluated at single-cell 
resolution, is one of the most technically and algorithmically advanced 
approaches in this area; thus, it is where many of the first single-cell 
genetic studies have appeared and is the focus of this article.

The field of single-cell genetics (and single-cell technologies in  
general) is still in its infancy, and although it holds tremendous 
potential, there remain areas where bulk transcriptome approaches 
continue to have an important role. For example, in homogeneous 
cell types (for example, iPS cells), a bulk eQTL study may be better 
powered than an sc-eQTL study in the same cell type78,155. However, as 
technology improves and costs decrease, this gap will progressively  
diminish. Emerging technologies are becoming cheaper156, require 
less specialized equipment157, capture longer transcripts with higher 
fidelity158 and may become amenable for large-scale single-cell studies 
in coming years.

As the second generation of eQTL mapping methods emerges, we 
can model regulatory differences at single-cell resolution and link them 
to differences in disease risk and heritability. This offers the promise of 
going beyond the conventional tissue and cell-type resolution that has, 
itself, still left the regulatory effects of many non-coding disease alleles 
unexplained4,13. Modelling cell-state-specific and context-specific 
eQTLs with single-cell data can also be used to improve inference of 
gene regulatory networks or haplotype-aware analyses of coordinated 
cis-regulatory effects on alleles159,160. However, as these single-cell data 
sets increase in size and algorithms seek to model heterogeneous, 
high-dimensional data, we face many challenges, as reviewed earlier.

Beyond these technical obstacles to implementing methods, there 
are additional barriers to clinical translation. Sample sizes for genetic 
studies are typically on the order of tens or hundreds of thousands, 
whereas single-cell studies have largely remained in the hundreds. 
Larger, more diverse cohorts of genotyped, single-cell-profiled indi-
viduals will be needed to conduct well-powered single-cell genetics 
studies with complex environmental or cell-state interactions. Addi-
tionally, this will enable GWAS-like studies linking genetic variants to 
cell-type composition and abundance estimated from scRNA-seq data 
(possibly adopting previous methods using FACS161,162), which are also 
genetically regulated and relevant to disease.

Moreover, eQTL studies often yield thousands of putative variant–
gene expression associations. Although their results can be used as 
supporting evidence, experimental validation remains necessary to 
establish true causal relationships between variants and disease. This 
is an important open question, especially for dynamic eQTLs identi-
fied in rare or hard-to-isolate cell states. Replication in independent 
single-cell studies is possible, but alternative molecular validation may 
be challenging. For sc-eQTLs and other single-cell genetic studies to be 
translated to the clinic, we need parallel development of experimental 
techniques to test the effects of variants in specific cell states at high 
throughput, such as CRISPR screens163,164 or investigation in iPS cells or 
organoids165,166. Computational strategies that leverage the heterogene-
ity of other single-cell modalities measured across many individuals 
may also link eQTL variants to upstream regulatory elements167,168 or 
downstream cellular phenotypes169.

The existing and future studies described in this Review aim to 
provide novel insights and hypotheses into the mode of action of vari-
ants in gene regulation and disease pathogenesis. Understanding these 
causal pathways in a cell-state-specific manner may inform targeted 
therapeutic strategies.
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