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Technological innovations continue to drive the establishment 
of single-cell genomics assays, which allow the interrogation 
of a growing number of molecular dimensions, including the 

genome, transcriptome and epigenetic modifications, at high resolu-
tion and across thousands of cells. Although no single ‘omics’ technol-
ogy can fully capture the intricacy of complex molecular mechanisms, 
collectively, these data have the potential to provide a comprehen-
sive picture of basic biological processes such as early mammalian 
development1,2, as well as clinically relevant traits, including cancer1. 
Multimodal measurements, where different molecular features can 
be probed in the same cell, can already be obtained using a variety of 
experimental techniques3–7, which have been reviewed elsewhere8–10.

One of the most promising features of multimodal sequencing 
is the opportunity to advance from descriptive ‘snapshots’ toward 
a mechanistic understanding of gene regulation. By incorporating 
prior knowledge about the hierarchical relationship between molec-
ular layers (that is, the central dogma of biology), multimodal assays 
will have an important role in identifying causal chains of events 
in gene regulatory networks. Moreover, multimodal assays have 
already been shown to allow more refined identification of cell types 
and cell states, for example, in the context of the immune system11.

None of the biological insights offered by multimodal assays 
would be possible without concomitant development of compu-
tational methods. Each new data modality presents distinct chal-
lenges and needs, ranging from low-level processing, quality control 
and normalization to downstream analysis and interpretation such 
as quantification of sources of biological variability, which are 
then used to generate testable biological hypotheses. In particular, 
a key challenge in the analysis of single-cell multimodal data is to 
devise efficient computational strategies to integrate different data 
modalities8,12–15. The term data integration has generally been used 
to describe algorithms and software for this task, encompassing 
a wide range of distinct computational strategies based on differ-
ent principles and assumptions. There is a need to define unifying  
concepts for these data integration tasks, to contextualize existing 

and future strategies depending on input data structure and the spe-
cific integration task at hand.

In this Review, we introduce basic concepts that underpin 
single-cell data integration techniques and discuss alternative 
choices of anchors for linking different datasets. We review the 
established principles, limitations and diagnostics of data inte-
gration strategies and highlight parallels between approaches for 
genetic analysis of single-cell traits and inference of regulatory 
dependencies between molecular layers. Finally, we discuss future 
challenges related to the integration of single-cell molecular pro-
files across physical dimensions, such as space and time, as well as 
multiscale modeling strategies for tying cellular representations to 
medically relevant human traits.

Input data and definition of anchors
The first step in any data integration pipeline is the selection of an 
anchor to link the different data modalities. In practice, this choice 
is usually driven by the experimental design, but it has fundamental 
implications for downstream analysis, as different choices for the 
anchor entail different statistical and biological assumptions and 
therefore require tailored methodologies. Depending on the choice 
of anchor, three types of data integration strategies can be distin-
guished (Fig. 1):

•	 Genomic features as the anchor (horizontal integration): for 
experimental designs where the same data modality is profiled 
from independent groups of cells (unmatched assays). An exam-
ple could be single-cell RNA sequencing (scRNA-seq) experi-
ments profiling cells from the same tissue across different groups 
of donors or combining data across different scRNA-seq technol-
ogies, where the assays are anchored by their common gene set.

•	 Cells as the anchor (vertical integration): for experimen-
tal designs where multiple data modalities are simultaneously 
profiled from the same cells (matched assays). This is exempli-
fied by assays such as single-cell methylome and transcriptome 
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sequencing (scM&T-seq6), single-cell analysis of genotype, 
expression and methylation (sc-GEM16), cellular indexing of 
transcriptomes and epitopes by sequencing (CITE-seq5) and 
single-nucleus chromatin accessibility and RNA expression 
sequencing (SNARE-seq17 and SHARE-seq4).

•	 No anchor in high-dimensional space (diagonal integration): 
for experimental designs where both cells and genomic fea-
tures are different between experiments. An example is when 
scRNA-seq and single-cell assay for transposase-accessible 
chromatin using sequencing (scATAC-seq) are applied to sepa-
rate groups of cells.

Defining the methodology
The choice of anchor determines the data integration strategy, that 
is, horizontal, vertical or diagonal integration (Fig. 1). For each 
task, a variety of methods (Table 1) and datasets for benchmarking  
(Table 2) exist, some of which we discuss below.

Strategies for horizontal integration. Horizontal integration strat-
egies define features as the anchor in unmatched experiments of the 
same type. This task is commonly faced in large-scale scRNA-seq 
projects where data are generated across multiple batches and tech-
nologies, as technical factors introduce differences that can result in 
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Fig. 1 | Alternative choices of anchors for data integration. a–c, Depending on the anchor choice, three types of data integration strategies can be 
considered: horizontal integration with features as the anchors (a), vertical integration with cells as the anchors (b) and diagonal integration with no 
anchors in high-dimensional space (c). The left column shows the data modalities extracted, while the right column illustrates the resulting data matrices 
to be integrated, depending on the anchor choice.
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systematic deviations in the distribution of observed RNA expres-
sion counts (or even cell type composition). If left unaccounted for, 
these sources of technical variation can mask relevant biological 
variability and thus complicate interpretation of downstream analy-
sis. Frequently, horizontal integration is formulated as a batch cor-
rection problem aimed at removing undesired technical variation 
across experiments while preserving genuine biological variation 
within and between experiments. With the growing availability of 
reference atlases at single-cell resolution, epitomized by the Human 
Cell Atlas project18, this is arguably one of the most important steps 
in single-cell analysis workflows.

Naive application of linear batch correction methods that were 
originally developed for bulk datasets (limma19 and ComBat20) has 
proven insufficient for single-cell experiments, mainly because 
these methods implicitly assume identical (or at least known) cell 
type composition across batches21. In practice, however, the abun-
dance of cellular subpopulations can vary even between biologi-
cal replicates owing to subtle differences in sample collection and 
library preparation. As a consequence, the majority of horizontal 
integration methods developed for single-cell data rely on nonlin-
ear (or locally linear) strategies that account for differences in cell 
type composition. Several integrative methods for batch correction 
of single-cell data have been developed, including MNN21, Seurat 
v3 (ref. 22), LIGER23, Harmony24, BBKNN25, scVI26, conos27, scmap28, 
Scanorama29 and scAlign30, among others. Despite having common 
principles, these each use different methodologies. MNN and Seurat 
v3 match mutual nearest neighbors in a joint low-dimensional space, 
defined by either principal components or canonical covariates.  

LIGER performs integrative non-negative matrix factorization 
(NMF) and disentangles dataset-specific factors from shared fac-
tors, followed by construction of a neighborhood graph using only 
the shared factors. BBKNN performs correction on a neighborhood 
graph, which results in much faster computation at the expense of 
losing single-cell resolution. Harmony learns a cell-specific linear 
correction function through successive rounds of k-means cluster-
ing on a principal component space. Finally, scVI is a Bayesian vari-
ational autoencoder with a probabilistic formulation that accounts 
for batch-specific variation.

In addition to having similar mathematical principles, most of 
these methods also have a common set of challenges. First, a clas-
sical problem of nonlinear integration methods is overcorrection, 
which occurs when the batch correction vector is incorrectly esti-
mated and the algorithm forcibly merges nonmatching subpopula-
tions of cells31. This can occur, for example, when no shared axes of 
biological variation are preserved between the datasets (for exam-
ple, when there are no common cell types). An optimal method 
should be able to detect this and prevent merging of datasets when 
no common biological variation exists. Second, most methods per-
form the integration step with cells embedded in latent space21–24. 
This undoubtedly improves the performance of most batch correc-
tion methods by removing noise and decreasing the computational 
cost. However, the high-dimensional observations (for example, 
gene expression counts) can be severely distorted as a result of the 
batch alignment, and other downstream gene-based analyses such 
as gene marker detection or differential expression analysis can 
become problematic32. Third, when extensive biological variability 
exists across batches, disentangling batch effects from the underly-
ing biological signal of interest is challenging. For example, when 
samples are profiled across a developmental time course, it is often 
difficult to randomize samples at different time points as part of the 
experimental design.

For a more complete description of the challenges of horizontal 
integration, as well as benchmarking strategies, we refer the reader 
to ref. 31, where the researchers compared the performance of 38 
methods using increasingly complex datasets and a range of metrics 
that included scalability, usability and ability to remove batch effects 
while retaining biological variation.

Strategies for vertical integration. Vertical integration strategies 
take advantage of the unambiguous assignment between molecular 
profiles in matched multimodal experiments and thus define cells 
or groups of cells (for example, cells sampled from the same indi-
viduals) as the anchor between data modalities.

Vertical integration methodologies can be further classified into 
local versus global approaches, a notation inspired by integrative 
approaches that have been pursued at the bulk level19,33. Local analy-
ses refer to associations between specific features across different 
molecular layers, often with the aim to detect putative interactions 
between them (for example, associations between genetic vari-
ants and gene expression, that is, expression quantitative trait loci 
(eQTLs32); Fig. 2). Global integrations, on the other hand, exploit 
the full spectrum of measurements to identify broader cellular 
states, such as cell cycle phase and pluripotency potential34. Global 
analyses typically identify patterns of covariation across genomic 
features and layers.

Local integration. Prominent examples of local analyses are asso-
ciations between genetic variants and gene expression (eQTLs) or 
between the epigenetic status of putative regulatory elements and 
the expression of nearby genes. Restriction to a defined search space 
is often necessary, ensuring that the problem remains tractable, from 
both a computational and statistical perspective, and aiding bio-
logical interpretation. For example, cis-eQTL mapping, where only 
genetic variants near a gene’s genomic location are interrogated, is 

Table 1 | Overview of common data integration methods 
classified according to their anchor choice

Integration task Method Ref.

Vertical (global) CCA 112

Vertical (global) JIVE 70

Vertical (global) PLS 71

Vertical (global) MCIA 113

Vertical (global) MOFA+ 65

Vertical (global) scAI 114

Vertical (global) iNMF 38

Vertical (global) Seurat v4 11

Vertical (local) Spearman’s rank correlation 
coefficient

50

Vertical (local) LMM 51

Horizontal MNN 21

Horizontal Seurat v3 22

Horizontal LIGER 23

Horizontal Harmony 24

Horizontal Scanorama 29

Horizontal BBKNN 25

Horizontal scVI 26

Horizontal scmap 28

Horizontal conos 27

Diagonal MATCHER 77

Diagonal MMD-MMA 78

Diagonal SCIM 115

Diagonal UnionCom 116

Diagonal coupledNMF 117
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Table 2 | Overview of datasets that can be used for benchmarking horizontal, vertical, diagonal and mosaic integration tasks

Integration task Biological system Number of cells Data modality technology Ref.

horizontal Mouse brain 156,049 RNA expression scRNA-seq (SPLiT-seq) 118
Mouse brain 509,876 RNA expression scRNA-seq (10x 

Genomics Chromium)
119

horizontal Human lung 690,000 RNA expression scRNA-seq (Drop-seq) 120
Human lung 32,472 RNA expression scRNA-seq (10x 

Genomics Chromium)
121

Human lung 65,662 RNA expression scRNA-seq (10x 
Genomics Chromium)

122

Human lung 9,404 RNA expression scRNA-seq (Smart-seq2) 122
Human lung 46,500 RNA expression scRNA-seq (snRNA-seq) 123

horizontal Human pancreas 2,126 RNA expression scRNA-seq (CEL-Seq2) 124
Human pancreas 978 RNA expression scRNA-seq (Fluidigm C1) 125
Human pancreas 2,209 RNA expression scRNA-seq (Smart-seq2) 126
Human pancreas 8,569 RNA expression scRNA-seq (inDrop) 127

Vertical 
(local +  global)

Human white blood 
cells

161,764 RNA expression +  surface 
proteins

CITE-seq 11

Human white blood 
cells

10,000 RNA 
expression +  chromatin 
accessibility

Multiome 10x https://
support.10xgenomics.com/
single-cell-multiome-atac-gex/
datasets

Vertical 
(local +  global)

Mouse gastrulation 1,105 RNA 
expression +  chromatin 
accessibility +  DNA 
methylation

scNMT-seq 64

Vertical 
(local +  global)

Mouse skin 34,774 RNA 
expression +  chromatin 
accessibility

SHARE-seq 66

Vertical 
(local +  global)

Mouse cerebral 
cortex

5,081 RNA 
expression +  chromatin 
accessibility

SNARE-seq 17

Vertical 
(local +  global)

Human brain 4,358 RNA 
expression +  chromatin 
accessibility +  DNA 
methylation

snmC2T-seq 75

Vertical (local) Human PBMCs 28,855 RNA 
expression +  genotypes

scRNA-seq 
(10x Genomics 
Chromium) +  genotype 
chips

50

Vertical (local) Human iPSCs 5,447 RNA 
expression +  genotypes

scRNA-seq (Fluidigm 
C1) +  genotype chips

54

Vertical (local) Human iPSCs (to 
endoderm)

36,044 RNA 
expression +  genotypes

scRNA-seq 
(Smart-seq2) +  genotype 
chips

51

Vertical (local) Human iPSCs (to 
dopaminergic 
neurons)

1,027,401 RNA 
expression +  genotypes

scRNA-seq 
(10x Genomics 
Chromium) +  genotype 
chips

57

Diagonal Human fetal tissue 4,000,000 RNA expression scRNA-seq 
(sci-RNA-seq)

128

Human fetal tissue 800,000 Chromatin accessibility scATAC-seq 
(sci-ATAC-seq)

129

Diagonal Bone marrow and 
white blood cells

35,582 RNA expression +  surface 
protein

CITE-seq 74

Bone marrow and 
white blood cells

35,038 Chromatin accessibility scATAC-seq 74

Diagonal Drosophila eye disc 3,531 RNA expression scRNA-seq (10x 
Genomics Chromium)

130

Drosophila eye disc 15,766 Chromatin accessibility scATAC-seq 130

Diagonal Mouse gastrulation 
(E8.25)

15,935 RNA expression scRNA-seq (10x 
Genomics Chromium)

88

Continued
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most prevalent because the multiple-testing burden is reduced and 
because the underlying molecular mechanisms can be more directly 
interpreted35,36. Similarly, the first parallel RNA expression, DNA 
methylation and/or chromatin accessibility assays have been used 
to probe dependencies between proximal regulatory elements and 
gene expression levels3,6,37–39.

Local analyses are typically supervised tasks, where specific com-
binations of features are tested for association on the basis of some 
prior knowledge of mechanism. From a methodological perspec-
tive, most local analyses use regression models40. In local analyses, 
the challenge is to distinguish true interactions between features 
from spurious associations that can result from confounding  

Integration task Biological system Number of cells Data modality technology Ref.

Mouse gastrulation 
(E8.25)

19,453 Chromatin accessibility scATAC-seq 131

Diagonal Mouse brain 509,876 RNA expression scRNA-seq (10x 
Genomics Chromium)

119

Mouse brain 5,000 Chromatin accessibility scATAC-seq https://support.10xgenomics.
com/single-cell-atac/
datasets/1.2.0/
atac_v1_adult_brain_fresh_5k

Mouse brain 15,000 Chromatin accessibility scATAC-seq 132

Diagonal Human lung 46,500 RNA expression scRNA-seq (snRNA-seq) 123

Human lung 90,980 Chromatin accessibility scATAC-seq 123

Mosaic Mouse gastrulation 116,312 RNA expression scRNA-seq 88

Mouse gastrulation 19,453 Chromatin accessibility scATAC-seq 131

Mouse gastrulation 1,105 RNA +  chromatin 
accessibility +  DNA 
methylation

scNMT-seq 64

Mosaic Human white blood 
cells

10,000 RNA expression scRNA-seq https://support.10xgenomics.
com/single-cell-gene-expression/
datasets

Human white blood 
cells

10,000 Chromatin accessibility scATAC-seq https://support.10xgenomics.
com/single-cell-atac/
datasets/1.2.0/
atac_pbmc_10k_v1

Human white blood 
cells

161,764 RNA expression +  surface 
proteins

CITE-seq 11

Human white blood 
cells

10,000 RNA 
expression +  chromatin 
accessibility

Multiome 10x https://
support.10xgenomics.com/
single-cell-multiome-atac-gex/
datasets

Mosaic Human brain 2,784 DNA methylation snmC-seq2 133

Human brain 4,358 RNA 
expression +  chromatin 
accessibility +  DNA 
methylation

snmC2T-seq 75

Human brain 23,005 RNA expression scRNA-seq 75

Human brain 12,557 Chromatin accessibility scATAC-seq 75

Human brain 4,200 DNA 
methylation +  chromatin 
conformation

sn-m3C-seq 134

Mosaic Mouse brain 5,000 RNA 
expression +  chromatin 
accessibility

Multiome 10x https://
support.10xgenomics.com/
single-cell-multiome-atac-gex/
datasets/1.0.0/
e18_mouse_brain_fresh_5k

Mouse brain 3,377 DNA methylation scBS-seq 133

Mouse brain 15,000 Chromatin accessibility scATAC-seq 132

Mouse brain 509,876 RNA expression scRNA-seq (10x 
Genomics Chromium)

119

PBMCs, peripheral blood mononuclear cells.

Table 2 | Overview of datasets that can be used for benchmarking horizontal, vertical, diagonal and mosaic integration tasks 
(continued)
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sources of variation or upstream factors that drive coordinated 
changes across many elements. For example, in eQTL analyses, 
sample substructure, due to relatedness and population stratifica-
tion as well as the repeated nature of the observations (that is, cells) 
for the same donor, is an important confounder to take into account 
(Fig. 2). Linear mixed models (LMMs) are a popular analytical 
framework to address this challenge41–46. In LMMs, a random effect 
component is added to the linear regression framework to adjust for 
such confounding dependencies. LMMs are widely used in genet-
ics41–46 but have also been applied in molecular association analyses 
(for example, see ref. 47) (Fig. 2).

Moreover, latent variable models such as principal-component 
analysis (PCA) and probabilistic estimation of expression residuals 
(PEER)48 can be used to identify, in an unsupervised fashion, fac-
tors affecting gene expression in a global manner, thus efficiently 
capturing known and hidden covariates affecting expression across 
all genes. These factors can then be added to the models as covari-
ates (alongside other factors such as sex, the age of individuals or the 
experimental batch) to control for additional phenotypic variation, 
often leading to improved statistical power.

Mapping eQTLs using single-cell expression profiles has led to 
the identification of cell-type-specific eQTLs (which are prevalent, 
as previously demonstrated49) in rare cell populations, which would 
have been masked using bulk assays43. Additionally, van der Wijst 
et al.50 and Cuomo et al.51 combined differentiation of induced plu-
ripotent stem cells (iPSCs) across multiple donors and single-cell 
expression profiles as well as allele-specific expression to show how 
eQTLs influence expression dynamically along the developmental 
axis (extending work from ref. 52) and cellular context. Single-cell 
eQTL mapping is growing as a field and promises to provide an addi-
tional layer to understanding of genetic regulation at the molecular 
level53–57. As methods to assay various molecular traits at single-cell 

resolution become more established, other flavors of single-cell QTL 
mapping, where genomic variants are associated with changes in 
DNA methylation, histone modification or protein level at single-cell 
resolution, will likely become routine. Similar methods can be 
applied to test for regulatory effects of genetic perturbations (rather 
than natural variation) on different molecular readouts, through 
the use of assays such as Perturb-seq58,59,CROP-seq60 and TAP-seq61. 
As an example, candidate enhancers were perturbed using CRISPR 
technology followed by testing for associations with changes in gene 
expression, identifying hundreds of high-confidence cis enhancer–
gene pairs in the K562 chronic myelogenous leukemia cell line62. 
As another example, Mimitou et al. introduced ECCITE-seq, a 
multimodal CRISPR-based screen that allows for the simultaneous 
detection of changes in transcriptome and protein abundance in the 
context of different combinations of induced mutations63.

Besides eQTL mapping, local integration can be performed for 
any pairs of molecular layers. For example, gene expression has been 
correlated with matching promoter DNA methylation and chro-
matin accessibility during mouse gastrulation, revealing that the 
expression of pluripotency genes is decreased by the induction of a 
repressive epigenetic landscape64,65. In the past several years, highly 
scalable approaches to simultaneously measure chromatin accessi-
bility and gene expression in thousands of cells66 have increased the 
power to identify cis-regulatory interactions. These kinds of associ-
ation analyses can be performed using the same LMM frameworks 
commonly used for eQTL mapping. The challenge, once again, is 
to account for hidden common drivers of variability across modali-
ties that can result in spurious associations. A common confound-
ing factor, especially in epigenetic analyses, is sequence context. For 
example, ATAC-seq peaks with high G+C content are associated 
with higher levels of chromatin accessibility, and DNA methyla-
tion regions with high C+G density are associated with low DNA 
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Fig. 2 | Cell-type-specific eQtl mapping as an example of local vertical integration. a, Single-cell eQTL mapping is an example of vertical integration, 
where the two modalities considered are RNA expression (top) and genotype at genetic loci (SNPs; bottom). Within an individual, and at a given SNP, 
all cells have the same genotype value. Cis-eQTL mapping is a local vertical integration task, where specific gene–SNP pairs are tested for association, as 
indicated by the arrows. b,c, Example of a cell-type-specific eQTL. In the illustration (b), genotype A results in increased expression of a gene of interest 
in one cell type (blue) but not in the other (gray). Alternative representation using boxplots (c). The average expression of the gene of interest (y axis) is 
increased as a function of the genotype at the SNP of interest (x axis) in one cell type (blue) but not in the other (gray).
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methylation levels. To account for this, methods such as chrom-
VAR67 perform association testing by designing, for each feature, a 
null distribution using randomly selected features with a matching 
sequence context. Additionally, there can be confounding factors 
that affect only one modality, but across all features—for example, 
differences in global methylation levels caused by differences in 
cell type. Similarly to eQTL analyses, where tools such as PCA and 
PEER are used to guard against this, such cell-centric attributes can 
be added as covariates in a linear regression framework.

Global integration. Although local analyses are useful for identify-
ing putative regulatory elements and their effect on gene expression, 
they have limited capacity to discover complex molecular maps 
resulting from interactions between multiple genomic features. An 
alternative strategy for data integration is to exploit the full spec-
trum of measurements to identify broader cellular states. For exam-
ple, cell cycle phase, pluripotency potential and differentiation state 
are properties that are determined by gene regulatory networks and 
cannot be studied with local analyses that test one feature at a time. 
Thus, global integration is typically performed using unsupervised 
dimensionality reduction approaches that exploit covariation pat-
terns across genomic features.

PCA is the paradigmatic method for global analyses of data 
when focused on a single modality. PCA infers an orthogonal pro-
jection of the data onto a low-dimensional space that maximizes 

the variance explained by the projection. The key to the popularity 
of PCA is its linearity assumption, which ensures that the resulting 
principal components are simple and interpretable. Generalizations 
of PCA for the integration of multiomics data have been devised 
by adapting multiview learning methods from the statistics litera-
ture68. Although most of these methods were originally developed 
for bulk data or applications outside genomics, the majority can be 
adapted to single-cell multimodal data. These approaches include 
unsupervised dimensionality reduction methods that represent dif-
ferent flavors of matrix factorization, such as canonical correlation 
analysis (CCA, implemented in Seurat18,22), MOFA69, JIVE70, PLS71, 
MCIA72 and iNMF62, among others. Each of these methods builds 
on the matrix factorization framework, which has been notably suc-
cessful owing to its simplicity, interpretability, computational speed 
and reduced risk of overfitting27.

A key challenge of global analysis is to quantify the coupling 
between data modalities. In the case of CCA, the aim is to find a 
latent representation that maximizes the covariation between two 
data modalities, thus neglecting variation that is not shared by the 
data modalities. MOFA can be regarded as a generalization of CCA 
that builds on the Bayesian group factor analysis framework73 to 
handle an arbitrary number of data modalities. By using structured 
sparsity priors, MOFA is capable of detecting sources of covariation 
between different sets of data modalities as well as sources of varia-
tion that are only present in a single data modality.

Box 1 | Statistical challenges associated with single-cell multimodal analysis

There are several statistical challenges for data integration. Below, 
we highlight key aspects.

•	 Heterogeneous data modalities. Molecular readouts col-
lected using different assays generally have distinct statistical 
properties and require bespoke methods with different sta-
tistical assumptions. For example, scM&T-seq6 yields mRNA 
expression counts that can be modeled using a negative bino-
mial distribution. However, DNA methylation readouts are 
binary (each CpG site is either methylated or unmethylated). 
Combining different likelihood models in a single inference 
framework is not a trivial statistical task.

•	 Overfitting. As the number of molecular layers increases (and 
the number of features), modeling strategies face the risk of 
overfitting if not appropriately regularized. Following from the 
example above, scM&T-seq captures the methylation status for 
potentially millions of CpG sites, but experimental designs are 
typically restricted to only a few hundred cells. This is a classic 
case of a large p (number of features) and small n (number of 
observations) problem in high-dimensional statistics135.

•	 Missing data. A major problem associated with some 
single-cell methodologies is the large amount of missing infor-
mation. Importantly, assays differ in terms of how missing 
data is defined. For example, for bisulfite sequencing methods 
(scM&T-seq6, scNMT-seq3 and scCOOL-seq136), missing val-
ues are distinguishable from observed values. However, for 
scRNA-seq and scATAC-seq, an absence of sequence reads 
does not distinguish between the event that the genomic feature 
was not measured and the event that the readout was indeed 
zero137. Handling of missing information is an important aspect 
of multiomics data integration, as some of the conventional 
implementations of popular statistical methods such as linear 
regression and PCA do not handle missing information.

•	 Delineating biological versus technical noise. Multiomics 
datasets from complex experimental designs typically contain 
multiple sources of heterogeneity, both technical and biologi-
cal. If not accounted for, technical variability can mask bio-
logical signals of interest138. Understanding and correcting 
technical variation is a critical step to ensure successful com-
putational analysis72.

•	 Scalability. As sequencing cost decreases and technolo-
gies improve, we anticipate that multimodal datasets will 
follow a trend similar to that seen with scRNA-seq, where 
in the span of less than 10 years the size of experiments 
increased from the order of tens to potentially millions of 
cells139. Querying exceptionally large datasets requires fast 
computational methods that typically rely on stochastic  
inference schemes26,65.

•	 Assay noise. Because of the small amounts of starting mate-
rial, single-cell technologies are inherently noisy and result 
in large amounts of technical noise140. To overcome this chal-
lenge, computational frameworks use information on the 
similarities between cells and/or genes to delineate signal from 
noise. Prominent examples are normalization methodologies 
based on Bayesian approaches that are able to borrow informa-
tion across cells and/or genes and propagate uncertainty when 
performing inference and predictions141,142.

•	 Principled validation and assessment of model outputs. 
Assessment of data integration outputs is one of the most chal-
lenging steps. Accurate ground truth information is seldom 
available, and hence this assessment relies on a combination of 
statistical quality metrics, as well as qualitative assessment of 
the impact of alternative integration strategies on downstream 
analysis tasks (that is, differential expression, dimensionality 
reduction, clustering, etc.).
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Some of the matrix factorization methods have been applied to 
single-cell multimodal experiments and have revealed important 
biological insights. In a dataset of mouse preimplantation embryos 
where scCAT-seq was used to simultaneously profile chromatin 
accessibility and RNA expression, iNMF enabled the extraction 
of interpretable molecular signatures associated with distinct cell 
states during the blastocyst stage18. Similarly, in a dataset of mouse 
postimplantation embryos where scNMT-seq was used to simulta-
neously profile RNA expression, DNA methylation and chromatin 
accessibility, an integrative analysis using MOFA revealed the exis-
tence of lineage-specific enhancers that are associated with germ 
layer commitment64.

Most of these methods have a common set of challenges and 
diagnostics (Box 1). First, molecular readouts collected using dif-
ferent techniques generally have heterogeneous statistical proper-
ties and thus have to be modeled under different assumptions. 
For example, the RNA component of scM&T-seq yields mRNA 
expression counts, whereas the DNA methylation component yields 
binary readouts (each CpG site is either methylated or unmethyl-
ated). Combining different likelihood models in the same statisti-
cal framework is not a trivial task. Second, different data modalities 
can have vastly different numbers of features. For example, a typical 
CITE-seq experiment consists of dozens of antibodies but thousands 
of gene expression measurements. This feature imbalance can have 
a strong influence on dimensionality reduction models, such that 
bigger data modalities disproportionately contribute to the latent 
space. A related challenge is differences in the signal-to-noise ratio 
across assays, which can be taken into account during the integra-
tion step to appropriately weight different assays11. Third, all matrix 
factorization methods report a solution, but its quality can be hard 
to assess. The amount of variance explained by the latent representa-
tion can be a useful diagnostic, but determining the model fit more 
broadly can be difficult. Apart from assessing statistical measures 
of the goodness of fit, it is recommended to explore how robust the 
matrix factorization solution is to perturbations in the input data. 
This generally involves assessing the consistency of the latent factors 
when bootstrapping or downsampling the dataset. Finally, linear-
ity is arguably the biggest advantage of most matrix factorization 
methods, but it comes at the cost of a substantial loss of explanatory 
power. Nonlinear alternatives, such as deep generative models in 
the form of variational autoencoders, have proven to be powerful 
generalizations of factor analysis and have been successfully applied 

to a variety of single-cell genomics technologies36,64, albeit at the cost 
of reduced interpretability.

Although we have focused our discussion on approaches based 
on matrix factorization, other strategies for vertical data integra-
tion have also been conceived. Hao et al. extended nearest neigh-
bor graphs to a multimodal setting11. This method, called weighted 
nearest neighbor (WNN) analysis (implemented in Seurat v4), 
yields a latent representation that enables joint definition of cellular 
states across data modalities.

Strategies for diagonal integration. The third type of data integra-
tion problem arises when no anchor exists in the high-dimensional 
space. This task occurs in unmatched experiments where differ-
ent molecular layers are profiled in different subsets of cells, for 
example, when performing scRNA-seq and scATAC-seq in separate 
groups of cells. In comparison to the horizontal and vertical integra-
tion tasks, diagonal integration is much more challenging and the 
biological insights that can be obtained from diagonal integration 
are often more difficult to interpret and validate.

Diagonal integration methods generally aim to reconstruct a 
low-dimensional manifold that captures covariation across two (or 
more) data modalities. Thus, a critical assumption of this strategy is 
the existence of a latent manifold that is, to some extent, preserved 
between the data modalities. For example, this could represent cells 
sampled from a common differentiation trajectory or cells sampled 
from a common set of subpopulations.

Several studies74–76 have addressed the diagonal integration task 
by simplifying it to a vertical or horizontal integration task. In the 
case of vertical integration, the data have to be summarized such 
that the samples unambiguously match between assays. For exam-
ple, this can be achieved by aggregating cells into cell types that are 
confidently identified in both assays. However, this strategy makes 
strong assumptions on the definition of cell types, and single-cell 
resolution is in part lost. In the case of horizontal integration, 
the data have to be summarized such that the features are linked 
between assays by one-to-one mapping (for example, gene body 
accessibility and gene expression). Using this strategy, horizontal 
methods such as LIGER33 and Seurat v3 (ref. 22) have successfully 
integrated unmatched epigenetic and transcriptomic experiments 
from the same tissue and even across different species. However, 
this strategy relies on fragile biological assumptions and can fail 
in scenarios where such linkages are incomplete and when the  
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relationship between the molecular layers is complex. A good exam-
ple is early embryonic development, where gene body DNA meth-
ylation and/or chromatin accessibility are not good predictors of 
gene expression52. Thus, the question that arises is how to perform 
data integration when epigenetic and transcriptomic measurements 
cannot be associated with a common genomic locus.

Some methods have attempted to solve the diagonal integration 
problem by reconstructing technology-invariant integrated latent 
spaces. The first of these methods was MATCHER77, a Gaussian 
process latent variable model that was successful at reconstructing 
a differentiation trajectory in embryonic stem cells by exploiting 
covariation between transcriptomic and epigenetic measurements. 
However, this method relies on the strong assumption that biologi-
cal variation is defined by a unidimensional axis of variation. More 
recent methods, including MMD-MA78, SCIM67 and UnionCom68, 
have generalized MATCHER to account for complex multivariate 
trajectories.

Diagonal integration is arguably the hardest of the aforemen-
tioned data integration tasks and faces important challenges on 
how to define the data input and validate and interpret the model 
output. One of the reasons is that understanding of the properties 
of latent biological manifolds is incomplete. Even if RNA expres-
sion and chromatin accessibility are (partially) correlated, there 
is no guarantee that their latent manifolds can in fact be aligned. 
Matched multimodal assays can be used as gold standard datasets 
to address this question and benchmark integration strategies76. We 
envisage that diagonal integration will receive increasing attention 
in the near future and that some of these questions will be explored 
and perhaps answered.

Mosaic integration. Despite the maturation of single-cell multi-
modal technologies, simultaneously capturing multiple molecu-
lar layers from the same cell in an efficient and scalable manner is 
still a challenging task. A more feasible and common experimental 
design is to profile individual data modalities on different popula-
tions of cells from the same biological sample (Fig. 3). This leads 
to an incomplete dataset where entire data matrices are missing, 
a scenario that is not handled by most data integration strategies. 
Nevertheless, this missing value structure will become ubiquitous 

as current transcriptomic atlases are extended with other molecu-
lar layers. Examples of biological systems where such data already 
exist include human white blood cells, mouse gastrulation and brain 
development (Table 2).

An instance of mosaic integration could consist of the impu-
tation of missing molecular layers with the goal of building a 
self-consistent multimodal dataset. Nonetheless, in this setting, 
there is no simple choice of anchor, as some pairs of matrices are 
anchored by the cells whereas other pairs of matrices are anchored 
by the features and some pairs of matrices do not share anchors at 
all. An intuitive and simple approach could be to perform succes-
sive but independent rounds of horizontal, vertical or diagonal data 
integration by selectively exploiting cells and features as anchors 
(Fig. 3), but the impact of feature selection and the order of inte-
gration complicate this approach. A more comprehensive computa-
tional solution would be to use multitask learning models that are 
capable of combining all three types of integration simultaneously 
while propagating uncertainty in the imputation estimates.

Transfer learning. Large single-cell atlases are becoming increas-
ingly available for a diverse collection of tissues, organs and spe-
cies, thus providing valuable references that can aid the analysis of 
succeeding datasets. For example, instead of performing unsuper-
vised clustering and cell type annotation de novo, one can lever-
age a matching reference dataset to generate a joint embedding and 
transfer the cell type labels from the reference atlas to the query. As 
described above, this strategy is frequently addressed as a horizontal 
integration task by multitask learning methods that exploit a com-
mon feature space to learn a joint representation. However, multi-
task learning methods load the full reference dataset together with 
the query dataset, which can require large computational resources 
as existing single-cell atlases grow in size. An alternative strategy is 
to extract a compressed representation of the reference dataset and 
use this to inform analysis of the query dataset. This strategy, known 
as transfer learning or knowledge transfer, has revolutionized fields 
such as computer vision79 and natural language processing80, where 
neural network models are trained using extensive amounts of data 
and then repurposed as a starting point to train new related mod-
els79,80. Note that, in this case, the anchor between experiments is the 
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feature space and the task can be classified as horizontal integration. 
However, the fundamental difference is that, instead of treating 
each experiment as an independent observation, transfer learning 
implies a hierarchical relationship where a reference dataset is used 
to inform a second query dataset. Transfer learning strategies have 
been devised for single-cell genomics for tasks such as denoising81, 
cell type classification82 and shared embedding83. With the increas-
ing availability of single-cell atlases, we envision that transfer learn-
ing will massively facilitate data reuse and will be at the core of many 
future single-cell data analysis pipelines.

Integration of molecular measurements with physical 
dimensions
Until recently, most integrative methods for single-cell genomics did 
not explicitly consider physical dimensions such as time and space. 
However, several experimental protocols have been developed that 
allow molecular measurements to be made, at the single-cell level, 
while maintaining some information about a cell’s location in the 
tissue of interest84–87. In this section, we consider principles and 
challenges of data integration in the context of time-resolved and 
spatially resolved multimodal data.

Integration of time-resolved data. When integrating samples from 
time course experiments, most horizontal integration methods treat 
each sample independently, ignoring the time component. This is 
a reasonable strategy if the populations of cells are sampled from a 
similar time point or from a stationary state. However, accounting 
for temporal variation is essential in some scenarios, particularly 
for the study of dynamic biological processes such as embryonic 
development. As an example, Pijuan-Sala et al. constructed a mouse 
gastrulation atlas by profiling a total of 116,312 single-cell tran-
scriptomes from embryonic day (E) 6.5 to E8.5 (ref. 88). Instead of 
integrating all embryos simultaneously, the researchers performed 

horizontal integration with MNN21 in a bottom–up fashion, starting 
with the closely related E6.5 samples followed by incorporation of 
later time points in a sequential manner.

In this example, time-aware data integration was possible because 
the time points for the different embryos were known and com-
parable. However, there are cases where the time correspondence 
between samples is not known, such as in evolutionary single-cell 
genomics, an emerging field aimed at mapping single-cell variation 
across different species89,90.

From a computational perspective, a challenge in this task is how 
to align differentiation trajectories when the molecular clock ticks 
at varying rates across different species. To address this, computa-
tional strategies such as dynamic time warping (DTW; originally 
developed for speech recognition91) have been successfully adapted 
and applied to align time series (Fig. 4). In the context of single-cell 
genomics, DTW permits the mapping of differentiation trajecto-
ries92–95. For example, Kanton et al. generated a gene expression atlas 
of chimpanzee and human cerebral organoid development from 
iPSCs and used DTW to align the differentiation trajectories96. 
Notably, they found that their differentiation trajectories did not 
match in late differentiation stages, thus revealing human-specific 
gene expression programs, some of which persist into adulthood. 
Evolutionary comparisons come with fundamental challenges of 
how to define the anchors. For instance, when performing hori-
zontal integration, which features should be used as anchors? In 
the case of RNA expression measurements, the simplest choice is 
to restrict the feature space to genes with high sequence similarity 
(that is, homologs). Yet, there is no guarantee that the function and 
transcriptional profiles of homolog genes are preserved when map-
ping across large evolutionary distances97. An alternative approach 
could be to summarize gene expression profiles over gene sets or 
pathways, which might be better preserved by natural selection and 
thus provide a more robust anchor choice98.
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Integration of spatially resolved single-cell data. The use of 
single-cell omics has been instrumental in improving understand-
ing of cellular biology. Yet, dissociation of cells from their native 
spatial context results in fundamental limitations in our ability to 
understand the interplay between intrinsic and extrinsic factors that 
underlie cellular communication and organ function. Bridging the 
gap between single-cell molecular readouts and tissue-level varia-
tion from histopathological and microscopy assays has been chal-
lenging because of the lack of a simple anchor choice between these 
two layers. Recent technological advances in multiplexed imaging 
and sequencing84–87 permit the quantification of a large number of 
genes in individual cells in situ and hold promise for making this 
type of multiscale modeling a forthcoming reality. However, from 
a computational perspective, the integration of high-resolution 
molecular information and spatial information raises challenges, 
and analytical tools are just beginning to emerge.

Most methods introduced for the analysis of spatially resolved 
data can be framed using the anchor framework. An example of a 
horizontal integration task is the definition of resident cell type iden-
tities in situ by using information from existing dissociated datasets 
(Fig. 5a). Although cell type assignment can be performed de novo, 
this strategy is limited by the resolution of the experiment, owing to 
the fact that fixed pixel locations can overlap multiple cells. Because 
of this, gene expression measurements at a given pixel can be the 
result of a mixture of cell types. Thus, a natural approach to associate 
pixels with cell type identities is to use multitask or transfer learning 
to exploit the cell type information contained in (dissociated) refer-
ence atlases99–103. As an example, SpiceMix combines NMF with a 
hidden Markov random field to jointly model spatial location and 
latent factors of cell identity to transfer cell type information from a 
dissociated reference dataset to a spatially resolved dataset99.

An example of a vertical integration task is the detection of genes 
that display spatial expression variation across a tissue (Fig. 5b), a 
task that is only possible when RNA expression and spatial location 

are available for the same cell (or pixel). Although a simple Pearson 
correlation coefficient could be applied for this task, recognizing 
the complex gene expression patterns that some tissues display in 
space requires the use of nonlinear methodologies. This is the aim 
of SpatialDE104 and spatial variance component analysis (SVCA)105, 
both of which build upon Gaussian process regression, a class of 
models commonly used in geostatistics. SVCA decomposes gene 
expression variation into intrinsic effects (that is, cell cycle), envi-
ronmental effects and, most importantly, an explicit cell–cell inter-
action component.

Finally, there are some largely unresolved data integration tasks 
where the definitions of horizontal, vertical and diagonal integra-
tion tasks will have to be revisited. One example is the generation 
of spatially resolved atlases where tissue samples are derived from 
multiple donors. The optimal strategy for designing an anchor that 
accounts for anatomical differences between individuals is unclear; 
such an anchor should incorporate biological parameters such as 
age, sex and ancestry, while remaining sensitive to clinically relevant 
variation106. Thus, there is a need for computational methods that 
are able to map samples onto a reference while at the same time 
acknowledging the variation between samples83.

Multiscale integration for personalized medicine
The enormous efforts to build atlases of single-cell variation in the 
context of human health will prove essential to understanding dis-
ease heterogeneity at the cellular level. However, querying these 
datasets will require a new set of methodologies for data integration 
that connect variation at the single-cell level with biomedical traits 
in human populations107.

Intuitively, the goal of such multiscale methodologies is to 
extract information from the cellular representation that explains 
phenotypic variability at the individual human level. If clinical data 
are available as a predictor, this task can be formulated as a super-
vised learning problem, where the covariates correspond to features 

Population-level variation

Cell-level variation in healthy state Cell-level variation in disease A

Cell-level variation in predisease state Cell-level variation in disease B

Fig. 6 | Exploiting molecular variation at single-cell resolution to construct population-level maps of human phenotypic variation. The central plot is 
a schematic of a latent representation of human population variation (each square corresponds to a human individual, and individuals are the anchor 
between the two representations), inferred from properties of single-cell profiles. Individuals are colored by phenotypic state (blue, healthy; orange, 
predisease; green, disease A; magenta, disease B). The position of each individual in the latent representation captures the cell type distribution as 
quantified using single-cell genomics in disease-relevant tissue. For each phenotypic state, we illustrate the single-cell profile of an individual by 
highlighting the location of their cells on a latent manifold that contains all cells from all donors (in gray). Note that each phenotypic state is associated 
with a different distribution of cell types.
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extracted from the cellular representation. Such features can be 
extracted using model-based approaches or manually defined by 
expert knowledge. The latter strategy was adopted for generation of 
a tumor immune atlas by integrating scRNA-seq datasets from 217 
patients and 13 different cancer types108. By calculating cell type pro-
portions from the single-cell representation, the investigators were 
able to provide a cellular basis for patient stratification by immune 
cell composition. More generally, we envisage that the extraction 
of interpretable and predictive features from single-cell representa-
tions using statistical models will be an area of active research. If a 
predictor is only available as a multidimensional variable, the task 
becomes substantially more challenging, as two multidimensional 
datasets have to be tied together. In this setting, the anchor between 
the two representations is the human individuals in the study, thus 
defining a new type of integration problem where cells and genes 
cannot be used as anchors (Fig. 6).

This class of multiscale modeling strategies will have a key role in 
enabling the application of single-cell omics in personalized medi-
cine, as these approaches will enable linkage of attributes specifi-
cally associated with a donor’s cell ecosystem to medically relevant 
traits108,109. The ultimate goal of such an integration task is to pro-
vide tools that will facilitate an understanding of the etiology and 
progression of diseases at single-cell resolution, predict pathological 
phenotypes before their onset and allow intervention in the most 
personalized fashion possible110,111.

Concluding remarks
In this Review, we introduce a set of concepts to contextual-
ize single-cell data integration techniques and discuss alternative 
choices of anchors for linking different datasets. We review estab-
lished principles, limitations and diagnostics of data integration 
strategies and highlight parallels between approaches for genetic 
analysis of single-cell traits and inference of regulatory dependen-
cies between molecular layers. Finally, we extend the basic data inte-
gration concepts to more challenging future applications, including 
the integration of single-cell omics data with physical dimensions 
and the construction of reference atlases of human variation for per-
sonalized medicine.
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