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Human iPSCs are a promising model for assessing the cellular 
consequences of human genetic variation across different 
lineages, developmental states and cell types. In particular, 

human iPSCs facilitate the study of developmental states and stimu-
lation conditions that would be challenging or even impossible to 
obtain in vivo. The creation of cell banks containing hundreds of 
iPSC lines1 provides an opportunity to perform population-scale 
studies in vitro2–5. However, differentiating iPSCs is expensive and 
labor intensive, with experiments being difficult to compare due to 
substantial batch variation. Thus, studies of more than a handful of 
lines remain a substantial challenge. Furthermore, most iPSC dif-
ferentiation protocols produce heterogeneous cell populations with 
the target cell type representing only a subset6–8. This variability in 
differentiation outcomes hinders efforts to dissect genetic contribu-
tions to cellular phenotypes.

scRNA-seq enables multiplexed experimental designs, in which 
cells from multiple donors are pooled together2,9,10. Multiplexing 
improves throughput and allows experimental variability between 
differentiation batches to be rigorously controlled, enabling dis-
crimination of pool effects from differences between lines. However, 
multiplexed experimental designs have largely been applied to short 
differentiation protocols and have not captured developmental pro-
gression toward a mature cell fate.

Here, we apply a multiplexing strategy to profile the differen-
tiation and maturation of 215 iPSC lines derived from the Human 
Induced Pluripotent Stem Cell Initiative (HipSci) toward a mid-
brain neural fate, including dopaminergic neurons (DAs). DAs 

are involved in motor function and other cognitive processes and 
play key roles in neurological disorders, including Parkinson’s 
disease11,12. Using an established protocol13, we collected cells at 
three maturation stages (progenitor-like, young neurons and more 
mature neurons), covering 52 days of differentiation. We addition-
ally exposed cells to a chemical stressor on day 51 to explore how 
genetic variation shapes stress response. Using this system, we cre-
ate an eQTL map at multiple stages of human neuronal differentia-
tion and identify over 500 new trait–eQTL colocalizations. Using 
estimates of cell population composition based on scRNA-seq data, 
we identify a strong cell-intrinsic differentiation bias and identify 
molecular signatures that can predict which iPSC lines fail to effi-
ciently produce neuronal cells.

Results
High-throughput differentiation of midbrain DAs. We selected 
215 iPSC lines from the HipSci project1, each derived from a single 
healthy donor, for differentiation toward a midbrain cell fate, includ-
ing DAs13. Differentiation experiments were multiplexed in pools 
containing between seven and 24 lines per experiment, with 35 
lines being contained in multiple pools (Supplementary Fig. 1 and 
Supplementary Table 1). Immunochemistry confirmed that cells 
differentiated either in pools or individually both expressed protein 
markers associated with patterning of DAs (LIM homeobox tran-
scription factor 1 α (LMX1A), forkhead box (FOX)A2 and tyrosine 
hydroxylase (TH)) (Supplementary Fig. 2). To capture transcrip-
tional changes during neurogenesis and neuronal maturation, we 
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performed scRNA-seq on cells captured at day 11 (midbrain floor 
plate progenitors), day 30 (young post-mitotic midbrain neurons) 
and day 52 (more mature midbrain neurons). To mimic an oxidative 
stress condition, we also profiled day 52 neurons 24 h after exposure 
to a sublethal dose of rotenone (0.1 μM, 24 h), a chemical stressor 
that preferentially leads to DA death in models of Parkinson’s dis-
ease (Fig. 1a)14.

After quality control (Methods), we obtained a total of 1,027,401 
cells across 17 pools15 and four conditions (Fig. 1a and Supplementary 
Table 1). The line of origin for each cell in a given pool was inferred 
from scRNA-seq read information using genotype data from the 
HipSci consortium (using demuxlet16). Adjustment for experi-
mental batch effects using Harmony17 followed by Louvain cluster-
ing15 identified 26 clusters (six, seven and 13 clusters, respectively, 
at days 11, 30 and 52, Extended Data Fig. 1a). These clusters were 
assigned putative cell type labels based on the expression profiles of 
literature-curated marker genes (Fig. 1b, Extended Data Fig. 1 and 
Supplementary Methods).

We identified a total of 12 distinct cell types, including six 
dominant cell types that contained at least 10% of cells in one 
of the four conditions (Fig. 1 and Extended Data Fig. 1). These 
included two cell type populations at day 11: proliferating and 
non-proliferating midbrain floor plate progenitors (both express-
ing LMX1A and FOXA2 and expressing MKI67 and TOP2A when 
proliferating18). At days 30 and 52, four additional dominant 
cell types were identified, two of which appeared to be neuro-
nal and two of which appeared to be non-neuronal (character-
ized by expression and lack of the pan-neuronal markers SNAP25 
and SYT1, respectively). The first neuronal population was 
annotated as midbrain DAs using a comprehensive panel of 75 
literature-derived DA marker genes, including TH, NR4A2, PBX1 
and TMCC318–21 (Extended Data Fig. 1d). Moreover, we performed 
transcriptome-wide alignment of this cell population to exist-
ing single-cell atlases of human iPSC-derived DAs18 and human 
fetal18 or adult human midbrain samples22, further supporting 

their DA identity with mapping rates to reference DA populations 
of 85–99% (Supplementary Methods). We annotated the second 
neuronal population as serotonergic-like neurons (serts), because 
these cells were enriched for TPH2 and GATA2 markers, which 
are also observed in serotonergic neurons in vivo23. The two 
non-neuronal cell types consisted of ependymal-like cells detected 
at days 30 and 52 (ependymal 1 (ref. 24)) and astrocyte-like cells 
detected at day 52 (astrocyte-like25,26). We also identified a neu-
roblast population specific to day 11 (4% of cells) expressing 
pro-neuronal genes (NEUROD1, NEUROG2, NHLH1 (refs. 27,28)) 
and an additional neuronal population (expressing SNAP25 and 
SYT1) that expressed some midbrain markers but could not be 
assigned a specific identity (unknown neurons 1, present at day 
30 and day 52 at around 7%, Extended Data Fig. 1c–e). Finally, we 
identified four rare cell types (<2% of cells sampled at any time 
point), including a second ependymal-like population (ependy-
mal 2), a cell population of proliferating progenitors and serts 
(proliferating serts) and two additional neuronal populations, 
which could not be annotated unambiguously (unknown neurons 
2 and 3, Fig. 1b and Extended Data Fig. 1c–e).

UMAP projection of cells collected across all time points, stimuli 
and lines revealed broad co-clustering of cell types but with notice-
able differences between time points and stimuli (Fig. 1b,c and 
Supplementary Fig. 1). For example, the proportion of DAs upon 
rotenone stimulation was significantly reduced (30% reduction 
upon stimulation, Fisher’s exact test, P = 2.2 × 10−16), consistent 
with previous observations that DAs are most affected by apoptosis 
due to oxidative stress29–31. In line with this observation, a variance 
component analysis of gene expression identified treatment as the 
second most important driver of expression variation after cell type 
(Supplementary Fig. 1).

Collectively, our population-scale scRNA-seq analysis revealed a 
diverse repertoire of cell types, enabling the study of both cell line 
differentiation propensity and the identification of genetic effects 
on gene expression with cell type resolution.
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Fig. 1 | Experimental design and cell type heterogeneity in pooled differentiations of iPSCs to a midbrain cell fate. a, Experimental workflow for 
scRNA-seq analysis of iPSC-derived DAs. Time points at which cells were collected for scRNA-seq profiling (day 11, day 30, day 52) are indicated. On 
day 51, half of the cells were stimulated with rotenone (ROT) for 24 h to induce oxidative stress. b, UMAP plot of all 1,027,401 cells assayed, colored 
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proliferating. c, Bar plot showing the fraction of cells assigned to each cell type for each condition.
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Intrinsic variation in neuronal differentiation efficiency between 
iPSC lines. iPSC differentiation protocols often generate highly 
variable results across cell lines, but the reason for this remains 
obscure, hindering efforts to select cell lines for specific applica-
tions8,32. We observed substantial variation in the proportions of  
cell types produced by different iPSC lines at each time point  
(Fig. 2a, Extended Data Fig. 2a and Supplementary Table 2). 
Principal component analysis of cell type fractions per line and 
pool identified the proportion of DAs and serts on day 52 as the 

largest axis of variation (principal component 1, 47% variance, 
Extended Data Fig. 2b–d). As DA and sert cells are derived from 
similar progenitor populations in vivo33, we considered the com-
bined proportion of these cell types on day 52 as a measure of  
‘neuronal differentiation efficiency’ for each iPSC line (Fig. 2b). 
Using 32 lines that were represented in two different pools, we 
confirmed the reproducibility of this measure of neuronal differ-
entiation efficiency (Pearson R = 0.75; P = 2 × 10−6; Fig. 2d), and 
we assessed its robustness when excluding rotenone-treated cells 
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(Supplementary Fig. 3). Neuronal differentiation efficiency was not 
associated with the number of lines per pool (R2 = 0.04, P = 0.46, 
t-test) but was positively correlated with neuronal maturation34 
(Supplementary Fig. 3 and Extended Data Fig. 1c). Finally, we  
considered data from six lines that were both differentiated indi vi-
dually and in one pool, finding that pooling neither affected neu-
ronal differentiation efficiency (Extended Data Fig. 3b) nor led to 
obvious transcriptional differences (Supplementary Fig. 4).

We next investigated whether these observations were generali-
zable to other neuronal differentiation approaches by differenti-
ating a pool of 18 lines (pool 4) into cerebral organoids for 113 d35,  
followed by profiling using scRNA-seq (11,445 cells, Fig. 2c and 
Methods). We found that the proportion of neurons (Supplemen-
tary Fig. 5) produced by each line in the cerebral organoids was 
also correlated with neuronal differentiation efficiency as esti-
mated from the dopaminergic differentiation (Fig. 2e,f, R = 0.79; 
P = 3 × 10−3; n = 12, t-test).

The reproducibility of differentiation outcomes in different set-
tings and protocols suggests that variation in iPSC neuronal differ-
entiation efficiencies arises primarily due to cell-intrinsic factors. 
Furthermore, the consistency of differentiation efficiency sug-
gests that these properties extend to neuronal differentiation more 
generally.

An iPSC gene expression signature predicts neuronal differentia-
tion efficiency. Motivated by the reproducibility of differentiation 
outcomes across multiple independent pools, we tested for asso-
ciations between neuronal differentiation efficiency and experi-
mental and biological factors (Supplementary Table 3). We found 
no or weak associations with passage number (P = 0.77; F-test), 
sex (P = 0.008, t-test), chromosome X activation status (P = 0.01, 
F-test, Supplementary Methods) or PluriTest scores36 (P = 0.01, 
F-test, Supplementary Methods) of the corresponding lines. Using 
variance component analysis, we assessed the relevance of addi-
tional factors, in particular, enabling the comparison of line versus 
pool effects. This identified line effects as the dominant driver of 
variability in neuronal differentiation efficiency (Extended Data  
Fig. 4a,b), although our design does not enable discrimination of 
line and donor effects.

Next, we assessed whether neuronal differentiation efficiency 
was associated with gene expression in undifferentiated iPSCs. 
Using independent bulk RNA-seq data for 184 iPSC lines included 
in this study1,37, we identified associations between neuronal dif-
ferentiation efficiency and gene expression level for 2,045 genes 
(983 positive and 1,062 negative associations; F-test, false discovery 
rate (FDR) < 5%; Fig. 3b,c, Supplementary Table 4 and Methods). 
When defining poor differentiation as a binary outcome (neuro-
nal differentiation efficiency <0.2), iPSC gene expression could 
be used to train a classifier of poor differentiation (logistic regres-
sion; 100% precision at 35% recall, assessed using leave-one-out 
cross-validation; Methods), which we validated in alternative train-
ing and testing regimes, using independent hold out lines (Extended 
Data Fig. 4 and Methods). Using this model, we obtained predicted 
differentiation scores for 812 HipSci lines with bulk RNA-seq 
data (Supplementary Table 5), finding that a substantial fraction 
of HipSci lines (13%) were likely to result in poor differentiation 
outcomes. We also tested whether the same experimental and bio-
logical factors previously associated with neuronal differentiation 
efficiency were replicated in this larger sample, finding consistent 
results (Supplementary Table 3 and Methods). Finally, to assess 
the possibility of a genetic or other donor-specific component of 
neuronal differentiation efficiency, we assessed the consistency of 
predicted differentiation outcomes for lines from the same donor, 
observing poor concordance (Extended Data Fig. 4b). Moreover, we 
found no association between germline variants and predicted neu-
ronal differentiation efficiency when performing a genome-wide 

association study (GWAS) (all P > 5 × 10−8, n = 540, minor allele fre-
quency (MAF) < 0.05; Methods), although the available sample size 
was insufficient to rule out weaker effects.

As iPSC cultures are heterogeneous, we hypothesized that the 
predictive gene signatures might originate from varying propor-
tions of iPSC subpopulations. To test this, we reanalyzed scRNA-seq 
data from 112 iPSC lines that were assayed previously2, 45 of which 
were also included in this study (Methods and Fig. 3a). We identi-
fied five clusters, with all but one (cluster 4) expressing high levels 
of core pluripotency markers (NANOG, SOX2, POU5F1, Extended 
Data Fig. 5c and Methods). Cells from cluster 2 overexpressed genes 
associated with inefficient neuronal differentiation (for example, 
UTF1) and downregulated genes associated with efficient neuronal 
differentiation (for example, TAC3; Fig. 3d,e and Extended Data 
Fig. 5). None of the remaining clusters displayed such an enrich-
ment (Extended Data Fig. 5b and Supplementary Table 6). To more 
directly assess the relevance of cluster 2 for neuronal differentia-
tion efficiency, we tested for and confirmed an association between 
the fraction of cells in cluster 2 and neuronal differentiation effi-
ciency for each cell line (Pearson R = −0.76, P = 2.05 × 10−9; Fig. 3f 
and Extended Data Fig. 5d). Using the known relationship between 
iPSC bulk RNA-seq values and the proportion of cluster 2 cells, we 
predicted this proportion for 182 cell lines included in our differ-
entiation experiments, confirming the negative correlation with 
neuronal differentiation efficiency (Pearson R = −0.49; P = 3 × 10−12, 
Extended Data Fig. 5e and Methods).

Finally, we analyzed an additional scRNA-seq dataset from iPSCs 
derived from lymphoblastoid cell lines38. Using our single-cell anal-
ysis workflow, we identified a cluster of cells with an expression pro-
file concordant with that of cluster 2 (Methods and Supplementary 
Fig. 6). In sum, these results suggest that a subpopulation of iPSCs 
with poor neuronal differentiation capability is consistently detected 
across different human iPSC banks and that this bias can be robustly 
predicted using expression markers at the iPSC stage.

eQTL discovery and comparison with in vivo eQTL maps. We 
next focused on understanding how individual-to-individual 
genetic variation influenced gene expression across differentiation 
and in response to stimulation. Specifically, we mapped cis-eQTL 
separately for each of the 14 distinct cell populations that cor-
respond to the profiled cell type–condition contexts of the domi-
nant cell types. eQTL were mapped using aggregate expression 
levels for each donor, considering common gene-proximal vari-
ants (MAF > 0.05, plus or minus 250 kb around genes; Methods). 
Variability in neuronal differentiation efficiency between lines 
resulted in substantial differences in the number of cells from each 
donor, generating variation in the total number of cells assayed for 
each context (Extended Data Fig. 6a) and in turn affecting accuracy 
of the estimates of aggregated expression. To account for this, we 
adapted commonly used eQTL mapping strategies2 based on linear 
mixed models by incorporating an additional variance component 
into the model (Methods). This increased the number of eQTL  
discoveries, resulting in 4,828 genes with at least one eQTL in at  
least one of the contexts (hereafter ‘eGene’, FDR < 5%, Fig. 4a, 
Extended Data Fig. 6b and Supplementary Table 7), with expected 
enrichment of eQTL variants in the vicinity of gene promoters 
(Extended Data Fig. 7b).

The largest number of eQTL were detected in progenitor cell 
populations, likely reflecting increased detection power due to the 
larger number of cells per line assayed (Extended Data Fig. 6a,b). 
Notably, the cumulative number of genes with an eQTL in each 
cell type increased when considering contexts further progressed 
along the differentiation axis, as well as upon stimulation (Fig. 4a). 
For example, eQTL mapping in matured DAs (day 52) identified 
an additional set of 441 eGenes compared to those in these cells 
at day 30. One such time-point-specific eGene was HSPB1, which 
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encodes a heat shock protein that plays a key role in neuronal dif-
ferentiation39 and for which SNP rs6465098[T>C] was an eQTL 
only in cells at day 52 (Fig. 4b). Changes in HSPB1 expression were 
observed in neurons after ischemia40 and were associated with toxic 
protein accumulation in Alzheimer’s disease41,42.

Similarly, we detected 248 additional eGenes in DA and sert neu-
rons following rotenone treatment. For example, rs12597281[A>G] 
is an eQTL for ACSF3 in rotenone-stimulated serotonergic neurons 
at day 52 but not in unstimulated cells (Fig. 4b). ACSF3 encodes 
an acyl-CoA synthetase localized in the mitochondria, and inher-
ited mutations are associated with a metabolic disorder, combined 
malonic and methylmalonic aciduria, in which patients exhibit 
a wide range of neurological symptoms, including memory loss, 
psychiatric problems and/or cognitive decline43. We also compared 
eQTL across the 14 contexts at the level of individual variants (using 
MASHR44; Methods), finding distinct clustering of contexts consis-
tent with the underlying lineages as well as context-specific effects 
(Extended Data Fig. 6c,d).

To test how our eGene discovery relates to previous studies, 
we compared the number of eGenes identified in this study with 
bulk eQTL maps from in vivo tissues from the GTEx consortium45 

(Methods). Although we observed fewer eQTL in cell populations 
of individual contexts than in GTEx tissues of similar sample size, 
the aggregate numbers of eGenes identified across contexts were 
similar to those from eQTL maps from primary tissue of the same 
sample size (Fig. 4c and Extended Data Fig. 8c).

A key question about eQTL maps from in vitro iPSC-based 
models is how closely they resemble eQTL maps from primary 
tissues that differ in cell composition. To explore this, we tested 
the extent to which regulatory variants were shared between 
eQTL maps in three resources: (1) the current study, (2) GTEx 
brain tissues (n = 13 tissues) and (3) bulk RNA-seq profiles of 
HipSci iPSC lines2,37, as measured by genome-wide consistency of 
eQTL effect sizes (using MASHR44; Methods). We observed that, 
as iPSCs were differentiated to increasingly mature neuronal cell 
types, the extent of eQTL sharing tended to increase (Fig. 4d), 
although this trend could in part be explained by increasing frac-
tions of GTEx brain eGenes that were expressed in different con-
dition–cell type contexts (Extended Data Fig. 8a). Interestingly, 
while globally iPSC-derived eQTL maps mimic in vivo GTEx 
brain eQTL maps, we also identified 2,366 eQTL that could not 
be detected in GTEx brain tissues (Q value >0.05 in any of 13 
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tissues), demonstrating the ability of our approach to discover 
new regulatory relationships.

Colocalization of eQTL with disease risk variants. The identified 
cell-type-specific eQTL maps across different differentiation con-
texts provide an opportunity to understand human disease traits 
and their genetic risk factors as identified by GWASs. To test for 
such colocalization events, we applied coloc46 (Methods) to the 
summary statistics from 25 neurological traits, eQTL discovered in 
our study, as well as eQTL obtained from GTEx data (Methods and 
Supplementary Tables 8 and 9).

We identified 1,284 eQTL in our study with evidence of colo-
calization with at least one disease trait (Fig. 5a,b). Of these, 597 
were found only in our dataset, corresponding to an additional 
>10% of colocalization events of GWAS variants compared to those 
of eQTL across all GTEx tissues (5,028 across 48 tissues, Fig. 5b). 
Notably, the majority of these genes (98%) were expressed in GTEx 
tissues but either had no eQTL (65%) or had an eQTL that did not 
give rise to a significant colocalization (34%, posterior probability 
(PP)3 < 0.5 for all GTEx brain tissues). Furthermore, when con-
sidering the relevance of different cell type contexts for explaining 
these specific colocalization events, we observed that 401 (67%) of 
the colocalizations in our data were associated with eQTL detected 

in later differentiation stages (day 52) or upon stimulation (day 52 
with rotenone, Supplementary Fig. 7). Finally, we considered a colo-
calization analysis when using aggregate pseudobulk results across 
all cell types in our data at day 52 (untreated cells), which yielded 
a markedly lower number of colocalizations, suggesting that the 
cell type specificity of our approach is a key factor in explaining the 
additional colocalizations (Extended Data Fig. 8d).

One notable colocalization event was an eQTL for SFXN5, a 
mitochondrial amino acid transporter47, that was specific to the 
rotenone-stimulated serotonergic neurons at day 52 and colocalized 
with a schizophrenia hit (PP4 = 0.78, Fig. 5c and Supplementary 
Fig. 7). Exposure to rotenone is known to induce oxidative stress by 
inhibiting the mitochondrial respiratory chain complex48,49, suggest-
ing that the specific genetic signal observed for the mitochondrial 
gene SFXN5 in serotonergic neurons might modulate environmen-
tal stress response.

Another example that colocalized with a schizophrenia GWAS 
variant was an eQTL for FGFR1, detected both in proliferating and 
non-proliferating floor plate progenitors at day 11 (PP4 = 0.93 and 
0.88 respectively, Fig. 5d). Previous studies showed that nuclear 
FGFR1 plays a key role in regulating neural stem cell proliferation 
and central nervous system development, in part by binding to the 
promoters of genes that control the transition from proliferation to 
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cell differentiation50. Additionally, it was shown that altered FGFR1 
signaling is linked to the progression of the cortical malformation 
observed in schizophrenia51.

These examples suggest that a combination of genetic and envi-
ronmental factors during early development might contribute to 
schizophrenia pathology and illustrate how these data represent a 
valuable resource for understanding the molecular basis of complex 
neurological disease.

Discussion
Characterizing the function of human trait-associated genetic vari-
ation requires large-scale studies performed in disease-relevant cell 

types and states. Here, we demonstrate how human iPSCs can be 
efficiently profiled at scale throughout a long-term differentiation to 
a midbrain cell fate. We uncover a highly reproducible, cell-intrinsic 
neuronal differentiation bias and show how this bias can be pre-
dicted from gene expression profiling of the pluripotent cell state. 
This sets the stage for optimized design of future large-scale iPSC 
experiments, in which cell lines can be rationally selected a priori 
without laborious testing of differentiation capacity.

Despite a modest sample size, our study identified a large number 
of new disease–eQTL colocalizations compared with those in GTEx 
tissues of equivalent sample size. For example, the numbers of new 
disease–eQTL colocalizations added by GTEx liver and cerebellar 
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hemisphere (n = 208 and 215, respectively) are 80 and 107, respec-
tively, compared to 597 colocalizations in this study. This does not 
necessarily indicate that the eQTL we discovered here are dispro-
portionately more likely to be disease relevant, as it is challenging 
to account for differences in the number of comparisons; individual 
GTEx tissues constitute a single eQTL map, whereas our data com-
prise multiple maps. As a result, there is an implicit multiple-testing 
burden that is not accounted for in existing methods for colocaliza-
tion analysis (for example, 20,201 tests in GTEx liver versus 153,350 
tests across all our maps). A biological explanation for additional 
colocalization events is that our experiment profiled expression 
states that are difficult to capture using post-mortem tissue, includ-
ing time points during neuronal differentiation and following rote-
none exposure. Additionally, we detected many eQTL that were 
specific to individual cell types, enabled by the single-cell resolution 
of our study. These signals, while present, are challenging to detect 
in bulk tissue because the relevant cell types are often rare. The rel-
evance of cell-type-specific colocalization events is also supported 
by our colocalization analysis using pseudobulk profiles at day 52, 
which identified a considerably lower number of colocalizations 
(Extended Data Fig. 8d). In sum, these results suggest that many 
‘missing’ but disease-relevant eQTL likely remain to be discovered 
using single-cell sequencing of both primary tissue and in vitro  
cell models.

A second implication of our study is that, despite growth com-
petition between cell lines, multiplexing experiments retain suf-
ficient cells per donor to perform robust genetic analysis, even 
following extended periods in culture (Extended Data Fig. 6a 
and Supplementary Table 2). Nevertheless, although cell lines 
were pooled at similar numbers, we observed extensive variation 
throughout our experiment in the numbers of cells produced by dif-
ferent lines (Fig. 2a). Future technical improvements, such as bet-
ter differentiation methods, more precise matching of growth rates 
of cell lines within pools or line selection based on predicted dif-
ferentiation capacity using markers in the iPSC state, may further 
increase the utility of multiplexed iPSC differentiation.

The ‘quality’ of human iPSCs was previously carefully examined 
using both genetic and functional genomic data36,52–55. Despite these 
efforts, differentiation bias among cell lines was widely appreciated 
but poorly understood. The underlying mechanisms were hypoth-
esized to involve epigenetic factors, environmental factors, such as 
culture conditions, changes acquired by cells over time in culture or 
cell type of origin. Our work systematically surveys differentiation 
biases at the scale of an entire cell bank. The results cannot arise due 
to differences in the cell type of origin56 because all HipSci lines were 
derived from skin. We observed weak relationships between neuro-
nal differentiation efficiency and other biological factors, including 
X chromosome inactivation status, which was described as relevant 
for other lineages2. However, our results clearly demonstrate that 
variability in differentiation outcomes is due to cell-intrinsic fac-
tors that are maintained over multiple freeze–thaw cycles. We found 
that this was unlikely to be the result of donor-specific effects, as 
there was poor correspondence in predicted differentiation out-
comes between lines derived from the same individual (Extended 
Data Fig. 4). Additionally, we did not detect significant effects in 
a genome-wide association analysis with predicted differentiation 
outcomes. Given these results, we suggest the two most likely candi-
dates for future investigation are somatic genetic changes or persis-
tent epigenetic changes that arise early in cellular reprogramming or 
under suboptimal culture conditions.

Our analysis identified a negative association between neuro-
nal differentiation efficiency at day 52 and the proportion of cells 
stemming from a specific subpopulation (cluster 2) of pluripotent  
cells that express the transcription factor UTF1 and other genes at 
elevated levels. Counterintuitively, the abundance of cluster 2 cells 
was positively correlated with the proportion of neuroblast cells 

on day 11. One possible explanation is that cell lines that commit  
earlier to a neuronal fate disproportionately lose neurons upon  
passaging at day 20. We speculate that culture methods that reduce 
iPSC heterogeneity may reduce the fraction of iPSC lines that resist 
efficient neuronal differentiation. We note that our findings do not 
explain all of the variance in neuronal differentiation capacity, and 
future studies will be required to better understand the biological 
basis of the differentiation bias observed here.

Based on molecular markers that predict differentiation bias, we 
estimate that 13% of iPSC lines in the HipSci resource produce very 
few neuronal cell types under the conditions tested. Importantly, 
these predictions generalize to previously untested lines. While the 
production of neuronal cells was intrinsically limited in these cell 
lines, the fact that this effect was associated with particular cell lines 
but not with particular donors suggests that cell banks that contain 
multiple lines per donor can be most effectively used for applica-
tions involving neural differentiation by the rational selection of cell 
clones. This a priori selection is enabled by gene expression profil-
ing data from the pluripotent state that is easily obtainable and often 
already available.

In summary, our study demonstrates how iPSC differentiation 
combined with scRNA-seq unlocks population-level studies in com-
plex, dynamic and biologically realistic cellular models. We antici-
pate that future uses of this model system will focus on experimental 
settings that are challenging or impossible with primary cells. These 
could include high-resolution sampling along extended differentia-
tion times to more complex differentiation trajectories or systems, 
such as organoids, or involve large panels of disease-relevant stimuli 
and drug exposures.
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Methods
Human iPSC lines. Human iPSCs were obtained from the HipSci project1 
(http://www.hipsci.org, Supplementary Table 10). Briefly, primary fibroblasts 
from skin biopsies were collected from consenting research volunteers recruited 
from the NIHR Cambridge BioResource. iPSC derivation was performed either 
using the Sendai reprogramming kit or, for two lines (HPSI0213i-nawk_55, 
HPSI0813i-ffdc_1), with episomal plasmids. Following transfer to feeder-free 
culture and expansion, each line was submitted to quality control, and the 
criteria for line selection were (1) level of pluripotency, as determined by the 
PluriTest assay36, (2) number of copy number abnormalities and (3) the ability to 
differentiate into each of the three germ layers (Kilpinen et al.1). All lines selected 
were healthy and of European descent.

Human iPSC culture. Lines were thawed onto tissue culture-treated plates 
(Corning, 3516) coated with 10 µg ml−1 Vitronectin XF (Stemcell Technologies, 
07180) using complete Essential 8 (E8) medium (Thermo Fisher, A1517001) and 
10 µM ROCK inhibitor (Sigma, Y0503). After thawing, cells were expanded in E8 
medium for at least two passages, using 0.5 µM EDTA, pH 8.0 (Thermo Fisher, 
15575-020) for cell dissociation. The last passage was always 3–4 d before plating 
for differentiation. Cell line synchronization was performed by adjusting the 
splitting ratio of each line, aiming to reach 60–80% of confluence on the  
pooling day.

Pooling and differentiation of midbrain DAs. iPSC colonies were dissociated 
into a single-cell suspension using Accutase (Thermo Fisher, A11105-01) and 
resuspended in E8 medium containing 10 µM ROCK inhibitor. Cells were counted 
using an automated cell counter (Chemometec NC-200), and a cell suspension 
containing an equal amount of each iPSC line was prepared in E8 medium 
containing 10 µM ROCK inhibitor and seeded at 2 × 105 cells per cm2 on plates 
coated with 1% Geltrex (Thermo Fisher, A1413202). Each pool of lines contained 
cells from between seven to 24 donors. After plating (24 h), neuronal differentiation 
of the pooled lines to a midbrain lineage was performed as described in ref. 13 with 
the following minor modifications: (1) SHH C25II was replaced with 100 nM SAG 
(Tocris, 6390) in the neuronal induction phase, and (2) on day 20, the cells were 
passaged with Accutase containing 20 U ml−1 papain (Worthington, LK00031765) 
and plated at 3.5 × 105 cells per cm2 on plates coated with 1% Geltrex for final 
maturation. The step-by-step protocol can be found at https://www.protocols.io/
view/generation-of-ipsc-derived-dopaminergic-neurons-bjpgkmjw.

Rotenone stimulation. On day 51 of differentiation, cells were exposed for 24 h to 
freshly prepared 0.1 μM rotenone (Sigma, R8875, HPLC purity ≥95%) diluted in 
neuronal maturation medium13. The final DMSO concentration was 0.01% in all 
exposure conditions. Unstimulated control samples (that is, treated with DMSO 
only) were taken concurrently.

Generation of cerebral organoids. Cerebral organoids were generated according 
to the enCOR method as previously described35. Briefly, one pool of 18 iPSC lines 
was thawed and expanded for one passage before seeding 18,000 cells onto PLGA 
microfilaments prepared from Vicryl sutures. The STEMdiff Cerebral Organoid 
kit (Stemcell Technologies, 08570) was used for organoid culture with timing 
according to manufacturer’s suggestion and Matrigel embedding as previously 
described57. From day 35, the medium was supplemented with 2% dissolved 
Matrigel basement membrane (Corning, 354234) and processed for scRNA-seq 
after 113 d of culture.

Generation of single-cell suspensions for sequencing. On collection days, cells 
were washed once with 1× Dulbecco’s (D) PBS (Thermo Fisher, 14190-144) before 
adding either Accutase (day 11) or Accutase containing 20 U ml−1 papain (days 30 
and 52). The cells were incubated at 37 °C for up to 20 min (day 11) or up to 35 min 
(days 30 and 52) before adding DMEM/F12 (Thermo Fisher Scientific, 10565-018) 
supplemented with 10 µM ROCK inhibitor and 33 μg ml−1 DNase I (Worthington, 
LK003170, only for cells collected on days 30 and 52). The cells were dissociated 
using a P1000 and collected in a 15-ml tube capped with a 40-µm cell strainer. 
After centrifugation, the cells were resuspended in 1× DPBS containing 0.04% 
BSA (Sigma, A0281) and washed three additional times in 1× DPBS containing 
0.04% BSA. Single-cell suspensions were counted using an automated cell counter 
(Chemometec NC-200), and concentrations were adjusted to 5 × 105 cells per ml.

Organoids were washed twice in 1× DPBS before adding EBSS (Worthington, 
LK003188) dissociation buffer containing 19 U ml−1 papain, 50 μg ml−1 DNase I 
and 22.5× Accutase. Organoids were incubated in a shaking block (750 r.p.m.) 
at 37 °C for 30 min. Every 10 min, the organoids were triturated using a P1000 
and BSA-coated pipette tips until large clumps were dissociated. Dissociated 
organoids were transferred into a new tube capped with a 40-µm cell strainer 
and pelleted for 4 min at 300g. After centrifugation, cells were resuspended in 
EBSS containing 50 μg ml−1 DNase I and 2 mg ml−1 ovomucoid (Worthington, 
LK003150). EBSS (0.5 volume), followed by 0.5 volume of 20 mg ml−1 
ovomucoid, was added to the top of the cell suspension, and the cells were 
mixed by flicking the tube. After centrifugation, the cells were resuspended in 
1× DPBS containing 0.04% BSA. Single-cell suspensions were counted using 

an automated cell counter, and concentrations were adjusted to 5 × 105 cells per 
ml. The step-by-step protocol can be found at https://www.protocols.io/view/
dissociation-of-neuronal-culture-to-single-cells-f-bh32j8qe.

Immunohistochemistry. Cells were fixed in 4% paraformaldehyde (Thermo 
Fisher Scientific, 28908) for 15 min, rinsed three times with 1× PBS (Sigma, 
D8662) and blocked with 5% normal donkey serum (AbD Serotec, C06SBZ) in 
PBST (1× PBS with 0.1% Triton X-100, Sigma, 93420) for 2 h at room temperature. 
Primary antibodies were diluted in PBST containing 1% normal donkey serum 
and incubated overnight at 4 °C. Cells were washed five times with 1× PBS and 
incubated with secondary antibodies diluted in 1× PBS for 45 min at room 
temperature. Cells were washed three more times with 1× PBS, and Hoechst 
stain (Thermo Fisher Scientific, H3569) was used to visualize cell nuclei. Image 
acquisition was performed using a Cellomics ArrayScan VTI (Thermo Fisher 
Scientific).

The following antibodies were used: anti-FOXA2 (Santa Cruz, sc101060, 
1:100), anti-LMX1A (Millipore, AB10533, 1:500), anti-TH (Santa Cruz, sc-25269, 
1:200), anti-MAP2 (Abcam, 5392, 1:2,000), donkey anti-chicken AF647 (Thermo 
Fisher Scientific, A21449), donkey anti-mouse AF488 (Thermo Fisher Scientific, 
A11008), donkey anti-mouse AF555 (Thermo Fisher Scientific, A31570), donkey 
anti-rabbit AF488 (Thermo Fisher Scientific, A21206) and donkey anti-rabbit 
AF555 (Thermo Fisher Scientific, A27039).

Chromium 10x Genomics library and sequencing. Single-cell suspensions were 
processed by the Chromium Controller (10x Genomics) using the Chromium 
Single Cell 3′ Reagent kit version 2 (PN-120237). On average, 15,000 cells from 
each 10x reaction were directly loaded into one inlet of the 10x Genomics chip 
(Supplementary Table 1). All steps were performed according to the manufacturer’s 
specifications. Barcoded libraries were sequenced using HiSeq 4000 (Illumina, one 
lane per 10x chip position) with 50-bp or 75-bp paired-end reads to an average 
depth of 40,000–60,000 reads per cell.

Single-cell data preprocessing. Sequencing data generated from the Chromium 
10x Genomics libraries (see above) were processed using Cell Ranger software 
(version 2.1.0) and aligned to the GRCh37/hg19 reference genome. Counts were 
quantified with the Cell Ranger ‘count’ command, using the Ensembl 84 reference 
transcriptome (32,738 genes) with default parameters.

For each of 17 pooled experiments, donors (that is, cell lines) were 
demultiplexed using demuxlet16, using genotypes of common (MAF > 1%) exonic 
variants available from the HipSci bank, and a prior doublet rate of 0.05. Only cells 
with successful donor identification were retained for further analysis.

Further quality control steps led to the exclusion of seven 10x samples, where 
a 10x sample is defined as the cells sequenced from one inlet of a 10x chip. In 
particular, samples for pool 10 on day 11 were excluded because of an issue in the 
library preparation. Samples for pool 12 on day 52 were excluded on the basis of 
low cell viability (72.1% in the rotenone-stimulated sample) and outlying gene 
expression (the first principal component in gene expression separated this sample 
from others at the same time point). One 10x reaction for pool 1 on day 30 was 
excluded on the basis of low quality, with <30% of cells successfully mapping to a 
cell line. Finally, cells from an outlier cell line (HPSI0913i-gedo_33) were excluded. 
This cell line contributed 91% of cells to pool 14 and had outlying gene expression, 
suggestive of a large-effect somatic mutation (Supplementary Table 1).

Normalization, dimensionality reduction and clustering. Two sets of analyses 
were performed: (1) analysis of each time point independently and (2) a combined 
analysis of a subsample of 20% of cells from all time points (used only for 
visualization purposes; Fig. 1).

First, independent analysis of time points allowed efficient batch effect correction 
(as all samples from the same time point contained similar mixtures of cell types), as 
well as reductions in computational demands. Counts were normalized to the total 
number of counts per cell using the Scanpy function pp.normalize_per_cell, and only 
genes with non-zero counts in at least 0.5% of cells were retained. The top 3,000 most 
variable genes were then selected, after controlling for mean–variance dependence 
in expression data using the Scanpy function pp.filter_genes_dispersion. The first 50 
principal components were calculated. Batch correction was applied on the level of 
principal components using Harmony17, with each 10x sample treated as a distinct 
batch. UMAP and clustering were performed using these transformed principal 
components. Clustering was performed using Louvain clustering with ten nearest 
neighbors, identifying 26 clusters across time points (six, seven and 13 clusters, 
respectively, at days 11, 30 and 52, Extended Data Fig. 1). Analysis steps besides 
batch correction were carried out using the Scanpy package (version 1.4)58. Cell type 
annotation was performed using a literature-curated set of relevant marker genes 
(Supplementary Methods)59–69.

For the combined analysis of all time points (for visualization purposes only), 
the same steps were applied, except that only a random subsample of 20% of cells 
was included in the analysis (following filtering for cells with donor assignment), 
and the definition of batches for the Harmony batch correction step was modified. 
In particular, for each batch to have a similar mixture of cell types, each pool 
(rather than each 10x sample) was considered as a distinct batch.
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Batch correction and clustering of the organoid dataset. The same steps described 
above were applied to the cerebral organoid data. This identified eight clusters that 
were mapped to different cell types (neurons, intermediate progenitor cells, radial 
glial progenitor cells, satellite cells, mesenchymal cells, myotube and Wnt-positive and 
PAX7-positive cells) using 24 marker genes (Supplementary Fig. 5).

Batch correction and clustering of the two single-cell iPSC datasets. The same 
dimensionality reduction, batch correction and clustering steps described above 
were applied to the two single-cell iPSC datasets analyzed2,38 (Extended Data Fig. 5  
and Supplementary Fig. 6). For the Cuomo et al. dataset2, normalized (by CPM) 
and log-scaled data were taken from the original publication, and no further 
normalization was performed. For the Sarkar et al. dataset38, count data were 
normalized and log scaled as described above for our data (normalized to total 
counts per cell). Note that, in both cases, only cells that passed quality control 
(as defined in the original publications) from these datasets were included. This 
analysis identified five and four clusters in the two different datasets, respectively.

Definition of neuronal differentiation efficiency. We computed cell 
type proportions for each cell line in each pool (that is, all (cell line, pool) 
combinations) at each time point. Based on these proportions (cell line, pool), 
combinations were clustered based on Euclidean distance (Fig. 3b and Extended 
Data Fig. 3). Only (cell line, pool) combinations for which at least ten cells were 
present at all time points were included in the heatmap in Extended Data Fig. 3a 
and in the principal component analysis shown in Extended Data Fig. 3b–d.

Neuronal differentiation efficiency was defined as the sum of the proportion of 
serts and DAs present on day 52. The neuronal differentiation efficiency of iPSC 
lines was calculated as the average of the efficiencies across all pools in which that 
cell line was included.

Predictive model of neuronal differentiation efficiency from iPSC gene 
expression. A logistic regression classifier was trained to predict midbrain 
neuron differentiation failure (neuronal differentiation efficiency <0.2, from 
above definition) of iPSC lines from their gene expression at the iPSC stage 
(using independent bulk RNA-seq data37). For cell lines that were differentiated 
multiple times, average values of neuronal differentiation efficiency across replicate 
experiments were used. Gene expression data were available from independent 
bulk experiments. The feature set was all expressed genes (that is, genes with mean 
log2 (TPM + 1) > 2, n = 13,475), and the model was trained using the scikit-learn 
(version 0.21.3) Python package (sklearn.linear_model.LogisticRegression). 
L1 regularization was used, with default parameter settings (inverse regulation 
strength, 1.0). Precision–recall was evaluated using leave-one-out cross-validation. 
We also considered the same model trained on the first half of the dataset (pools 
1–8) and assessed its performance on the second half of the dataset (pools 9–17), 
which was generated sequentially over the course of the study (Extended Data  
Fig. 3e). This approach yielded similar results.

When using the trained model for making predictions, we used the predicted 
score that corresponds to recall of 35% and precision of 100% (Extended Data  
Fig. 3c,d). When predicted scores for two lines from the same donor were present, we 
classified donors into concordant good differentiators when both lines had positive 
differentiation scores (>0.02231; n = 209) and concordant poor differentiators when 
they were both predicted to be poor differentiators (<0.02231; n = 13). Finally, 
‘discordant’ donors were donors for which one line was predicted to be a bad 
differentiator and the other was not (n = 49). Bulk RNA-seq expression of UTF1 and 
TAC3 for these lines was consistent with these predictions (Extended Data Fig. 4).

Finally, we considered data from two additional pools (pools 20 and 21) that 
were not considered in the main analysis. These pools included data from 16 lines 
in total, 11 of which were not contained in any other pool. We applied the predictor 
trained on the main dataset to obtain predicted scores of neuronal differentiation 
capacity for these lines and compared the predicted scores to the observed 
neuronal differentiation efficiency. For ten of 11 lines, the predicted differentiation 
score indicated potent differentiation (score >0.02231), and all but one (ten of 11) 
demonstrated positive neuronal differentiation (neuronal differentiation efficiency 
>0.2). One line was predicted to be a poor differentiator (score <0.02231) and 
indeed performed poorly (neuronal differentiation efficiency <0.2). Overall, this 
corresponds to 100% precision at 50% recall, which is within expected ranges 
based on the chosen thresholds.

Differential expression and gene set enrichment analysis. Differentiation 
expression analysis between each cluster and the others in the single-cell iPSC 
datasets was performed using Scanpy’s function ‘tl.rank_genes_groups’, grouping 
by each cluster at a time58. Multiple-testing correction was performed using the 
Benjamini–Hochberg approach with an FDR threshold of 5% (Supplementary 
Table 6). We used gprofiler70 (https://biit.cs.ut.ee/gprofiler/gost) to perform 
biological process enrichment analysis using all upregulated genes with a log fold 
change greater than or equal to one as an input. The top 20 hits are presented in 
Supplementary Table 11.

Cis-eQTL mapping. For cis-eQTL mapping, we followed the procedure in 
Cuomo et al.2 and adopted a strategy similar to approaches commonly applied in 

conventional bulk eQTL analyses1. We considered common variants (MAF > 5%) 
within a cis region spanning 250 kb up- and downstream of the gene body for 
cis-QTL analysis. Association tests were performed using a linear mixed model, 
adapting the approach in ref. 2. Specifically, we considered an additional random 
effect term to account for varying numbers of cells per donor. Briefly, for each 
donor, we introduced a variance term 1 × n−1, accounting for the varying numbers 
of cells used to estimate mean expression level for each donor. All models were 
fitted using LIMIX71,72, using likelihood ratio tests to assess significance. To 
adjust for experimental batch effects across samples, we included the first 15 
principal components calculated on the expression values in the model as fixed 
effect covariates. To adjust for multiple testing, we employed an approximate 
permutation scheme, analogous to the approach proposed in ref. 73. Briefly, for 
each gene, we generated 1,000 permutations of the genotypes while retaining the 
relationship between covariates, random effect terms and expression values. We 
then adjusted for multiple testing using this empirical null distribution. To control 
for multiple testing across genes, the Storey’s Q value procedure was applied74. 
Genes with significant eQTL were reported at FDR < 5%.

eQTL mapping was performed as described above for 14 contexts (cell 
type, time point and stimulus status), considering six major cell types (top 
four cell types per condition with at least 20% cells; Supplementary Table 7). 
Gene expression for each donor was calculated as the mean of log-transformed 
counts-per-cell-normalized expression across cells (including cells from 
different pools, when applicable). A line was considered in the eQTL analysis 
of given context (cell type, condition) if at least ten cells were captured from the 
corresponding context. Genes were considered for eQTL analysis if they were 
expressed (UMI count >0) in at least 1% of cells across all lines (10,993–12,789 
genes tested across contexts). Lead associations per eGene and context are reported 
in Supplementary Table 7. The robustness of this eQTL analysis approach was 
confirmed by comparison to alternative eQTL mapping strategies (Supplementary 
Methods and Extended Data Fig. 7).

Sharing of eQTL signal between cell types and with GTEx brain tissues. To 
quantify the extent of sharing between eQTL maps, MASHR software was used44. 
For all MASHR analyses, lead eQTL SNPs were considered per gene and context. 
Four random SNPs per gene were selected as a background for the calculation of 
the data-driven covariance; a canonical covariance matrix was also included as 
recommended (https://stephenslab.github.io/mashr/articles/eQTL_outline.html.). 
Next, we extracted the posterior β values using MASHR and estimated pairwise 
sharing between conditions and/or tissues. Effects were defined as shared if the 
effect direction and effect size were within a factor of 0.5 of each other, when 
considering SNP–gene pairs passing a significance threshold (local false sign rate 
<0.05) in at least one of the two conditions considered.

We applied this workflow to perform the following three comparisons.
•	 eQTL maps from our cell types and conditions (n = 14 eQTL maps): 9,641 

genes assessed (Extended Data Fig. 6c)
•	 eQTL maps from all cell types and conditions (n = 14 eQTL maps), as well  

as bulk RNA-seq-derived eQTL in iPSCs, as well as all of the GTEx brain  
tissue data (n = 13 eQTL maps): 7,975 genes assessed (Fig. 4d and  
Supplementary Fig. 7b)

•	 All of our cell types and conditions (n = 14 eQTL maps), as well as all  
of the GTEx tissues (n = 49 eQTL maps): 7,586 genes assessed  
(Supple mentary Fig. 7a)

As an alternative strategy to assess the sharing of eQTL, we assessed the 
fraction of eQTL from GTEx brain tissues that were recapitulated in our eQTL 
maps. Briefly, we considered a nominal definition of eQTL replication, based on 
nominal significance of lead eQTL variants discovered in each of the 13 GTEx 
brain tissue eQTL maps in each of our 14 eQTL maps (Extended Data Fig. 8a,b). 
Notably, this comparison allows for distinguishing lack of replication versus 
lack of assessment of an eGene because of differences in expression. Among 
eGenes identified at FDR < 5% in each of the GTEx maps, approximately 50% 
were tested in the eQTL contexts in this study. For the shared fraction of genes 
assessed, 20–40% eQTL were nominally significant (P < 0.05) across the 14 maps. 
Cumulatively, this means that 10–20% of the eQTL from a GTEx brain map could 
be rediscovered in our single-cell maps.

Colocalization analysis between neuro-related GWAS traits. We collected 
summary statistics for 25 GWAS traits that were either neurodegenerative and/
or neuropsychiatric diseases or related to behavior and intelligence and that had 
at least five genome-wide significant loci (P = 5.0 × 10−8; Supplementary Table 8). 
We then defined GWAS subthreshold loci as 1-Mb-wide genomic windows with at 
least one SNP at P < 10−6, centering the window around the index variant (variant 
with minimum P value in the window). If there were multiple subthreshold loci 
within a 1-Mb window, we merged them and took the index variant with the 
minimum P value overall. Statistical colocalization analysis between 14 eQTL maps 
from our study and 48 eQTL maps from GTEx (version 7, https://www.gtexportal.
org/home/datasets) and those GWAS loci was performed using the coloc package46, 
implemented in R with default hyperparameter settings. We tested any gene for 
which the transcription start site and eQTL lead variant (SNP with minimum  
P value for the gene) were both within the 1-Mb window centered at each GWAS 
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index variant. We tested all SNPs located between the GWAS index variant and 
the top eQTL (within the window) variant with 500-kb extensions on either side. 
We matched SNPs between eQTL and GWAS based on chromosomal position 
and reference and/or alternative alleles. Genes with the posterior probability of 
colocalization (PP4) greater than 0.5 were defined as GWAS colocalized.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Managed access data from scRNA-seq are accessible in the European Genome–
phenome Archive (EGA, https://www.dev.ebi.ac.uk/ega/) under the study number 
EGAS00001002885 (dataset EGAD00001006157). Open access scRNA-seq 
data are available in the European Nucleotide Archive (ENA) under the study 
ERP121676 (https://www.ebi.ac.uk/ena/browser/view/PRJEB38269). Processed 
single-cell count data and eQTL and colocalization summary statistics are 
available on Zenodo at https://zenodo.org/record/4333872. The two iPSC 
single-cell datasets are available on Zenodo (https://zenodo.org/record/3625024) 
and GEO (GSE118723) for the datasets described in Cuomo et al.2 and Sarkar 
et al.38, respectively. iPSC bulk RNA-seq data from Bonder et al.37 are available 
on the EGA (study ID, EGAS00001000593, https://www.ebi.ac.uk/ega/studies/
EGAS00001000593) and the ENA (ERP007111, https://www.ebi.ac.uk/ena/
browser/view/PRJEB7388). Chip genotypes for HipSci lines are available from the 
EGA (EGAS00001000866) and the NCBI (PRJEB11750).

Code availability
All scripts are available in the following github repository: https://github.com/
single-cell-genetics/singlecell_neuroseq_paper/. The standalone predictor 
for neuronal differentiation capacity is available at https://github.com/
single-cell-genetics/singlecell_neuroseq_paper/tree/master/differentiation_
prediction_model/. The eQTL mapping pipeline is available at https://github.com/
single-cell-genetics/limix_qtl/.
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Extended Data Fig. 1 | scRNA-seq clustering and cell type annotation. Cells at each time point pooled across lines were clustered using Louvain 
clustering, after normalization and batch correction using Harmony (Methods). Subsequently, clusters were annotated to cell types using known marker 
genes; when two clusters showed the same gene set enrichment they were assigned to the same cell type identity (Methods). a, UMAPs of cells sampled 
at each time point and coloured by cluster identity. b, Same UMAPs as in a, with cells this time coloured by cell type annotation. c, Heatmap showing 
average expression profiles of canonical marker genes across the identified cell types (as in b, excluded dopaminergic neuronal markers; expression scaled 
between 0 and 1 for each gene). d,e, Heatmaps similar to c, showing average expression profile of marker genes across the identified cell types for d) 
dopaminergic neurons using literature-curated markers e) cortical hem/Cajal retzius cells using markers (Methods). Legend: Astro: Astrocyte-like, DA: 
Dopaminergic neurons, Epen1/2: Ependymal-like 1/2, FPP: Floor Plate Progenitors, NB: Neuroblasts, P_FPP: Proliferating Floor Plate Progenitors, P_Sert: 
Proliferating serotonergic-like neurons, Sert: Serotonergic-like neurons, U_Neur: Unknown Neurons.
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Extended Data Fig. 2 | Cell type proportions across time points and definition of neuronal differentiation efficiency at day 52. a, Heatmap of the cell 
proportion matrix. The colour code in the first bar indicates the assignment of lines to pools. Rows (that is cell line, pool combinations) were hierarchically 
clustered according to their Euclidean distance (as in Fig. 2b). Cell proportions were estimated for each cell type and time point for all combinations 
of cell lines, considering 10 pools with at least 10 cells at all time points (138 lines). b, Proportion of variance explained by each principal component 
calculated from the cell proportions matrix from a. c, Comparison of the first principal component (PC1) with the sum of fractions of dopaminergic and 
serotonergic-like neurons present on day 52. d, UMAP of the scRNA-seq profiles used for the cell proportions matrix from a, with cells coloured by the 
loading of PC1 (left) and PC2 (right) of the cell proportion matrix. Legend: Astro: Astrocyte-like, DA: Dopaminergic neurons, Epen1: Ependymal-like 1, FPP: 
Floor Plate Progenitors, NB: Neuroblasts, P_FPP: Proliferating Floor Plate Progenitors, Sert: Serotonergic-like neurons, U_Neur1: Unknown Neurons 1.

NATURE GENETiCS | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


Articles NATURE GENETiCS

Extended Data Fig. 3 | Prediction of differentiation failure from iPSC gene expression. a, Histogram of neuronal differentiation efficiencies across 
cell lines. The dashed line denotes the threshold to define differentiation success or failure (that is efficiency=0.2). b, Effect of pooling on neuronal 
differentiation efficiency. Shown is a scatterplot of neuronal differentiation efficiency, estimated from independent single-line differentiations (x-axis) vs 
differentiation efficiency defined from pooled data from the corresponding lines (y-axis). Bars connecting cyan and blue points indicate differentiation 
efficiencies for replicates of the same cell line in different pools (cyan points), and the average of those replicates (blue points). For cell lines differentiated 
in multiple pools, average differentiation efficiencies are shown by blue points. The Pearson R and p-value were computed from the average values (blue 
points) only. c, Precision-recall curve for a logistic regression model trained to predict differentiation failure from iPSC gene expression data (Methods). 
Shown is precision versus recall, as assessed using leave-one-out cross validation. d, Area under the precision-recall curve (AUPR) for models as 
presented in c, when considering alternative threshold values to define differentiation failure. e, Histogram of the predicted differentiation based on iPSC 
gene expression for 812 HipSci cell lines. The threshold used to define potent differentiators corresponds to 35% recall, 100% precision, when using 0.2 as 
threshold (as in a, b). f, Cross validation of differentiation outcome prediction. The dataset was split in half (pools 1–8, 9–17) to define independent training 
and test fractions. All processing steps (merging, clustering, batch correction, etc.) were performed separately for these two fractions, following identical 
steps and parameter settings to those used for the main analysis. We trained a predictive model using data from pools 1–8, and assessed its performance 
on pools 9–17. Only cell lines not contained in pools 1–8 were considered for performance assessment.
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Extended Data Fig. 4 | Predicted neuronal differentiation capacity across replicate iPSC lines derived from the same donor. a,b, Variance component 
analysis of neuronal differentiation efficiency. a, Variance component breakdown of a model that explains neuronal differentiation efficiency as a function 
of cell line, pool, sex, age and noise (n = 230; fitted using lme4). b, In order to assess the effect of XCI status, we fit an analogous variance component 
model as in a, however considering only female lines (n = 115), and explaining neuronal differentiation efficiency as a function of cell line, pool, XCI 
status, age, and noise. c, Histogram of predicted neuronal differentiation efficiency based on iPSC gene expression for 812 HipSci cell lines. The vertical 
line indicates the prediction threshold that corresponds to 35% recall, 100% precision (c.f. Extended Data Fig. 3). d, Scatter plot of predicted neuronal 
differentiation efficiency for two replicate lines from the same donor. Shown are data from n = 271 donors contained in HipSci with RNA-seq data from two 
independent reprogramming events. Replicate 1 is chosen as the line with the lower predicted score. Colours indicate three categories of donors, according 
to the concordance of predicted neuronal differentiation capacity: both lines predicted to fail (blue, n = 13), both lines predicted to be potent differentiators 
(green, n = 209), discordant predictions, with one potent and one failing differentiator (yellow, n = 49). To assess whether this was significantly different 
from what we would expect for any two lines taken by chance, we performed a chi square test comparing the expected frequencies for any two given lines 
(based on the overall results) and the observed frequencies for pairs of lines from the same donor, obtaining a non-significant result (p = 0.1991). e, Bulk 
RNA-seq expression of UTF1 and TAC3 for the two replicate lines for the same donor, stratified by the categorisation as in d. In the box plots, the middle 
line is the median and the lower and upper edges of the box denote the first and third quartiles.
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Extended Data Fig. 5 | Analysis of iPSC scRNA-seq data reveals a subpopulation characterised by expression of predictive marker genes associated 
with lower differentiation efficiency. a, UMAP overview of the dataset. iPSC scRNA-seq data from (Cuomo et al. 2020) were analysed following the 
analogous batch adjustment and clustering steps as applied to the neuronal differentiation data, identifying 5 clusters. b, UMAP as in a, coloured by 
the squared correlation coefficient R2 between correlation of bulk expression and differentiation efficiency (R values are indicated, as in Fig. 3b) and log 
fold change between one cluster and all others. c, Violin plots of gene expression for selected pluripotency genes (NANOG, SOX2, POU5F1) as well as 
marker genes that are upregulated and downregulated respectively in cluster 2 (UTF1, TAC3, from Fig. 3). d, Scatter plot of the proportion of cluster 2 cells 
between replicate experiments (based on n = 23 lines differentiated in two separate pools in Cuomo et al. paper 2020). LOESS curve and 95% confidence 
interval are included. e, Scatter plot between neuronal differentiation efficiency (x-axis) and the proportion of cells assigned to cluster 2 (y-axis) analogous 
to Fig. 3f, however using computational estimates of the proportions of cluster 2 cells based for a larger set of HipSci lines (using Decon-cell, based on bulk 
RNA-seq, n = 182; Methods).
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Extended Data Fig. 6 | eQTL mapping strategies and sharing between eQTL maps. a, Distribution of the number of cells per cell line with scRNA-seq 
available for eQTL mapping for each context (cell type-condition). Dots correspond to individual cell lines (number of cell line per context ranging 
between 104 and 173). b, Number of genes with at least one eQTL (that is eGenes) for each context (cell type-condition) detected using either a 
traditional linear model (coral) or using a linear mixed model that accounts for heterostochastic noise due to variation in the number of cells assayed for 
each line (seagreen; Methods). c, Sharing of eQTL signal between 14 eQTL maps across all contexts (cell type-conditions), as estimated using MASHR 
(Methods). d, Distribution of the number of contexts (cell type-conditions) in which a given eQTL is identified (from 1 to 14, lfsr < 0.05, quantified using 
MASHR). Legend: Astro: Astrocytes-like; DA: Dopaminergic neurons, Epen1: Ependymal-like1, FPP: Floor Plate Progenitors, P_FPP: Proliferating Floor Plate 
Progenitors, Sert: Serotonergic-like neurons.
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Extended Data Fig. 7 | eQTL mapping robustness across methodologies. a, Scatter plot of the first two principal components of the kinship matrix, 
revealing no evidence for pronounced population structure or relatedness between lines. b, Genomic location of eQTL lead variants relative to normalized 
gene coordinates, considering 1,024 eQTL identified in DA day 52 untreated cells (using Model 0, see below). c, Scatter plot of effect size estimates (left) 
and negative log p-values (right) for eQTL lead variants (FDR < 5%), comparing the model considered in this study (Model 0, x-axis) versus 4 alternative 
eQTL models (Model 1–4, y-axis). Inlined is Pearson’ R. Shown are results obtained on day 52 untreated DA cells, comparing the following models:  
Model 0: y = PC1:15 + SNP + 1/n + noise (1,024 eGenes), Model 1: y = pool + sex + SNP + 1/n + noise (1 pool per line selected; (608 eGenes, 574 of  
which also in Model 0), Model 2: y = pool + sex + SNP + K + noise (320 eGenes, 312 of which shared with Model 0), Model 3: y = PCs + K + noise  
(471 eGenes, 457 of which shared with Model 0), Model 4: y = pool + SNP + K + 1/n + noise (856 eGenes, 734 of which shared with Model 0).
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Extended Data Fig. 8 | eQTL and colocalisation in relation to GTEx. a, Fraction of GTEx brain eGenes that could be assessed in each of the considered 
contexts (cell type-conditions; Methods). b, Fraction of GTEx brain eQTL that were replicated in this study (nominal p < 0.5; fraction relative to the set of 
assessed genes from a). c, Figure analogous to main text Fig. 4c, additionally including eQTL counts from a pseudobulk eQTL analysis (top red dot on the 
left, red square on the right; calculated using cells from all day 52 cells untreated pooled). d, Figure analogous to main text Fig. 5a, additionally including 
colocalisation results from a pseudobulk eQTL analysis (using cells from all day 52 cells untreated pooled). In the box plots, the middle line is the median 
and the lower and upper edges of the box denote the first and third quartiles, while the violin plots show the distribution. Legend: Astro: Astrocytes-like; 
DA: Dopaminergic neurons, Epen1: Ependymal-like1, FPP: Floor Plate Progenitors, P_FPP: Proliferating Floor Plate Progenitors, Sert: Serotonergic-like 
neurons.
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Data collection No software was used for data collection

Data analysis Published software: a combination of NGS analysis tools, CellRanger (version 2.1.0), STAR (version 020201), GATK (version 3.7.0), 
demuxlet (version 1.0), R (Harmony, MNN) and Python (Scanpy version 1.4, see details in Methods). 
Unpublished data analysis scripts are available at https://github.com/single-cell-genetics/singlecell_neuroseq_paper/
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Managed access data from single-cell RNA sequencing are accessible in the European Genome-phenome Archive (EGA, https://www.dev.ebi.ac.uk/ega/) under 
the study number EGAS00001002885 (dataset: EGAD00001006157). 
Open access single-cell RNA sequencing data are available in the European Nucleotide Archive (ENA) under the study ERP121676 (https://www.ebi.ac.uk/ena/ 
browser/view/PRJEB38269). 
Processed single cell count data and eQTL summary statistics are available from Zenodo: https://zenodo.org/record/4333872. 
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Sample size Sample size was based on results from many previous human eQTL studies (e.g. PMID: 29022597), where above 100-200 samples provide 
power to map eQTL, with power increasing with sample size.

Data exclusions Single-cell RNA-seq data were excluded based on quality control criteria, as described in the Methods

Replication We consider the main dataset (sc-RNA-seq from differentiating neurons) to be a single dataset, albeit including data from many repeated 
differentiation 
assays. In particular, the differentiation assay was repeated across 19 experiments and the measure of differentiation efficiency was robust 
across replicates 
of the same cell line in different experimental batches. While some additional differentiation assays failed in the course of generating the 
dataset, these were 
not attempts to replicate any findings we report. For 12 lines, the measure of differentiation efficiency was also replicated in another 
independent scRNA-seq 
cerebral organoid dataset. The identification of a subpopulation of iPSC cells was replicated in an independent dataset (see Extended Figure 
3).

Randomization iPSC lines were allocated to groups/experimental batches at random.

Blinding Investigators were blinded during collection, as the origin of each assayed cell was only determined during data analysis (by assessment of 
RNA-sequencing data).
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used The following antibodies were used: FOXA2 (Santa Cruz, sc101060 - 1/100),LMX1A (Millipore, AB10533 - 1/500), TH (Santa Cruz, 

sc-25269 - 1/200), MAP2 (Abcam, 5392 - 1/2000), Donkey anti-chicken AF647 (Thermo Fisher Scientific, A21449), Donkey antimouse 
AF488 (Thermo Fisher Scientific, A11008), Donkey anti-mouse AF555 (Thermo Fisher Scientific, A31570), Donkey antirabbit 
AF488 (Thermo Fisher Scientific, A21206), Donkey anti-rabbit AF555 (Thermo Fisher Scientific, A27039)

Validation All commercially available antibodies have been validated by the manufacturer with supporting publications found on 
manufacturer websites. Antibodies were further validated in-house using relevant positive and negative controls.
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Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) All cell lines are iPSCs from the HipSci project (www.hipsci.org)

Authentication All cell lines were matched to the original donor by genotype, using RNA-sequencing data.

Mycoplasma contamination Cells were not tested for mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

NA

Human research participants
Policy information about studies involving human research participants

Population characteristics 25 to 79 years old phenotypically 'healthy' donors (male and female) with no diagnosed genetic disease.

Recruitment All samples for the HipSci resource were collected from consented research volunteers recruited from the NIHR Cambridge 
BioResource (http://www.cambridgebioresource.org.uk).

Ethics oversight Samples were collected initially under ethics for iPSC derivation (REC Ref: 09/H0304/77, V2 04/01/2013), with later samples 
collected under a revised consent (REC Ref: 09/H0304/77, V3 15/03/2013).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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