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Angiotensin-converting enzyme 2 (ACE2) and accessory proteases (TMPRSS2 and CTSL) are needed for severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2) cellular entry, and their expression may shed light on viral tropism and impact across 
the body. We assessed the cell-type-specific expression of ACE2, TMPRSS2 and CTSL across 107 single-cell RNA-sequencing 
studies from different tissues. ACE2, TMPRSS2 and CTSL are coexpressed in specific subsets of respiratory epithelial cells in the 
nasal passages, airways and alveoli, and in cells from other organs associated with coronavirus disease 2019 (COVID-19) trans-
mission or pathology. We performed a meta-analysis of 31 lung single-cell RNA-sequencing studies with 1,320,896 cells from 
377 nasal, airway and lung parenchyma samples from 228 individuals. This revealed cell-type-specific associations of age, sex 
and smoking with expression levels of ACE2, TMPRSS2 and CTSL. Expression of entry factors increased with age and in males, 
including in airway secretory cells and alveolar type 2 cells. Expression programs shared by ACE2+TMPRSS2+ cells in nasal, 
lung and gut tissues included genes that may mediate viral entry, key immune functions and epithelial–macrophage cross-talk, 
such as genes involved in the interleukin-6, interleukin-1, tumor necrosis factor and complement pathways. Cell-type-specific 
expression patterns may contribute to the pathogenesis of COVID-19, and our work highlights putative molecular pathways for 
therapeutic intervention.

Coronavirus disease 2019 (COVID-19), caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection, can manifest with pathologies in multiple systems, 

including the lungs and airways, gastrointestinal tract, kidney, liver 
and heart, and multi-organ failure1–3. SARS-CoV-2 RNA has been 
found in nasal and throat secretions, saliva and stool specimens4.

Virion infection of host cells is initiated by the viral spike (S) 
protein binding to ACE2. ACE2 expression has been correlated 
with increased viral load in human cell lines5,6 and in mice7. Viral 
infection further requires proteolytic cleavage of the S protein, and 
TMPRSS2 or cathepsin L, encoded by the CTSL gene, can provide 
this role for cellular entry8.

There is substantial variation in the clinical consequences of 
infection across individuals, from asymptomatic illness to death. 
Disease severity and mortality rise with age9,10, with a slightly higher 
incidence and mortality in men2. Children are significantly less 
likely to develop severe acute disease11. Smoking may be associated 
with more severe disease12. Finally, adults with preexisting cardio-
vascular disease may have higher rates of disease acuity and death2.

Identifying specific cell types that can be infected by SARS-CoV-2 
and relating SARS-CoV-2 entry factors to key covariates like age 
or sex could inform our understanding of COVID-19 tropism and 
heterogeneity in disease outcomes. The Human Cell Atlas (HCA) 
community has generated single-cell atlases of diverse tissues in 
healthy individuals, which can now be leveraged to enable such 
studies. Early analyses of HCA data revealed that some of the cells 
of the nasal passages, airways, lung parenchyma and gut express 
ACE2 and TMPRSS2 (refs. 13,14), most notably nasal goblet cells 
and multiciliated cells13 in the airways and AT2 cells in the distal 
lung13,15,16, and identified ACE2 and TMPRSS2 expression in colonic 
enterocytes13,17.

Here, we chart the cell-type-specific expression patterns of ACE2 
and accessory proteases by integrated analysis of 116 single-cell 
and single-nucleus RNA-sequencing (scRNA-seq and snRNA-seq) 
studies, including 31 studies of the lung and airways, and 85 studies  
of other diverse tissues. With the lung and airway studies, to our 
knowledge, we performed the first single-cell meta-analysis of 

atlas datasets associating cell-type-specific changes in expression 
level with age, sex and smoking status. We identify cross-tissue and 
tissue-specific gene programs enriched in immune-associated genes 
in ACE2+TMPRSS2+ cells and highlight other proteases that are sig-
nificantly coexpressed with ACE2 and could play a role in infection.

Results
Double-positive ACE2+TMPRSS2+ cells across the lung, air-
ways and other organs associated with COVID-19. We enumer-
ated the proportion of double-positive ACE2+TMPRSS2+ cells and 
ACE2+CTSL+ cells across 92 human scRNA-seq or snRNA-seq 
studies, including 7 of the lung and airways (Fig. 1, Methods and 
Supplementary Table 1 and 2). We surveyed published datasets, 
assigning cells to five broad categories (Fig. 1a,b, Extended Data 
Figs. 1 and 2 and Supplementary Table 1), and analyzed more finely 
annotated published and unpublished datasets (Methods, Fig. 1c,d 
and Supplementary Tables 1 and 3).

ACE2+TMPRSS2+ epithelial cells were most prevalent (in 
order) within the ileum, liver, lung, nasal mucosa, bladder, testis, 
prostate and kidney (Fig. 1a). Consistent with previous reports18, 
double-positive ACE2+TMPRSS2+ cells in the nose and airways were 
largely secretory goblet and multiciliated cells, and double-positive 
cells in the distal lung were largely alveolar type 2 (AT2) cells (Fig. 1c  
and Extended Data Fig. 3a). ACE2 and TMPRSS2 expression in 
secretory and AT2 cells is also supported by single-cell sequencing 
assay for transposase-accessible chromatin (scATAC-seq) from the 
primary carina and subpleural parenchyma of one adult individual, 
respectively, as well as secretory and multiciliated cells, and to a 
lesser extent some basal and tuft cells (Supplementary Fig. 1a–d; 
n = 3 samples per location, n = 1 patient; Methods). In a larger 
aggregation of lung and nasal datasets (Methods), we observed 
ACE2+TMPRSS2+ cells in various lung epithelial cells in pediatric 
samples (Extended Data Fig. 3b,c), also supported by single-cell 
chromatin accessibility by transposome hypersensitive sites 
sequencing (scTHS-seq)19 (Extended Data Fig. 4 and Methods). 
Significant double-positive ACE2+TMPRSS2+ cells in other tissues  
included enterocytes, pancreatic ductal cells, prostate luminal  
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epithelial cells, brain oligodendrocytes, kidney proximal tubular 
cells and principal cells of the collecting duct, inhibitory enteric 
neurons, heart fibroblasts/pericytes, and fibroblasts and pericytes in 
multiple tissues (Fig. 1a–c). Notably, some of the cell types in which 
there were double-positive cells (including brain oligodendrocytes, 
multiciliated cells of the upper respiratory tract and sustentacular 
cells in olfactory epithelium) are cell types that also express MYRF 
(albeit not always significant triple expressors; Supplementary 
Fig. 2). MYRF is a transcription factor that induces expression of 
myelin basic protein and myelin oligodendrocyte glycoprotein20. 
Autoimmune reactions against these proteins are known to poten-
tially induce neurological symptoms (Discussion).

ACE2+CTSL+ coexpressing cells were enriched among AT1 and 
AT2 cells, enterocytes, ventricular cardiomyocytes and heart mac-
rophages, as well as fibroblasts and pericytes in multiple tissues, 
including the placenta, heart, lung, kidney and enteric nervous sys-
tem (ENS; Fig. 1d). We did not observe substantial ACE2 mRNA 
expression in scRNA-seq profiles in the bone marrow or cord 
blood (Fig. 1a,b), although there was ACE2 expression in alveolar 
and heart macrophages (Extended Data Fig. 5). Notably, in human  
placenta21–23, ACE2 was expressed (1.4%) in maternal decidual/
stromal cells, maternal pericytes and fetal extravillous trophoblasts, 
cytotrophoblasts and syncytiotrophoblasts in both first-trimester 
and term placenta (Fig. 1d). While there was little expression of 
TMPRSS2 (0.2%), CTSL was expressed in most cells (56%), and 
there were ACE2+CTSL+ double-positive cells (1.3%).

Cell-type-specific expression of additional proteases that may be 
relevant to infection. SARS-CoV-2 infects cells in the absence of 
TMPRSS2 (ref. 8), so additional proteases likely play roles in pro-
teolytic cleavage of viral proteins for entry and egress. To predict 
such proteases, we tested the coexpression of ACE2 with each of 625 
annotated human protease genes24 in a declined donor transplant 
dataset (‘regev/rajagopal’; Supplementary Table 1). TMPRSS2 was 
significantly coexpressed in multiple lung epithelial cell types (Fig. 2a  
and Supplementary Tables 4 and 5), as were multiple members of 
the proprotein convertase subtilisin kexin (PCSK) family (Fig. 2a,b), 
including FURIN, PCSK2, PCSK5, PCSK6 and PCSK7 in AT2 cells. 
Proprotein convertases have known roles in coronavirus S-protein 
priming. We obtained similar results in an independent dataset 
from 40 samples (Extended Data Fig. 6a,b, Supplementary Table 1  
and datasets ‘kropski’, ‘lafyatis/rojas’, ‘misharin_new’, ‘nawijn/
teichmann’, ‘northwestern_misharin_ 2018reyfman’ and ‘sanger_
meyer_2019madissoon’; collectively referred to as ‘aggregated 
lung’). As previously reported25, the SARS-CoV-2 S protein has a 
polybasic motif in the S1/S2 region (Extended Data Fig. 6c) that 
corresponds to cleavage motifs of PCSK family proteases (Extended 
Data Fig. 6d)25 and an additional site at the S2′ position (Extended 
Data Fig. 6e)26.

FURIN, PCSK5 and PCSK7 were coexpressed with ACE2 across 
multiple lung cell types (Fig. 2c and Extended Data Fig. 6f). PCSK1 
and PCSK2 were mostly restricted to neuroendocrine cells27; PCSK2 

was also detected in some AT2 cells (Fig. 2d and Extended Data  
Fig. 6g). In AT2 cells, proximal multiciliated cells and basal cells, 
dual expression of PCSK proteases with ACE2 was at fractions com-
parable to or higher than that of ACE2+TMPRSS2+ cells (Fig. 2e and 
Extended Data Fig. 6h). Coexpression was significant across other 
tissues (Extended Data Fig. 6i,j), including liver, ileum, kidney and 
nasal airways.

Because different host proteases may contribute to different 
stages of the viral life cycle26, we examined the prevalence of ACE2+

TMPRSS2+PCSK+ triple-positive cells in the lung. ACE2+TMPRSS2
+PCSK7+ were the main triple-positive cells in multiciliated (0.75%) 
and secretory (0.72%) cells of proximal airways, and ACE2+TMPRS
S2+FURIN+ triple-positive cells were the most common within AT2 
cells (0.36%; Extended Data Fig. 6k). Among all known human pro-
teases (Fig. 2f and Supplementary Fig. 3), cathepsins (CTSB, CTSC, 
CTSD, CTSL and CTSS), proteasome subunits (PSMB2, PSMB4 and 
PSMB5) and complement proteases (C1R, C2 and CFI) were the 
most commonly coexpressed with ACE2 in lung epithelial cell types.

Orthogonal validation of ACE2, TMPRSS2 and CTSL expres-
sion in the lungs. As ACE2 expression was quite low, we next vali-
dated some of these patterns by fluorescence in situ hybridization 
and immunofluorescence in tissue sections of airways and alveoli 
from three healthy donor lungs that were rejected for lung trans-
plantation. ACE2, CTSL and TMPRSS2 were coexpressed by fluo-
rescence in situ hybridization in alveolar cells, albeit at low levels  
(Fig. 1e,f). Co-staining with cell-type-specific markers showed ACE2 
expression and TMPRSS2 expression in some HTII-280+ AT2 cells  
(Fig. 1g,h); we confirmed the latter by TMPRSS2 protein immuno-
staining (Extended Data Fig. 7d). TMPRSS2 protein was expressed 
at low levels in some AT1 cells (identified by AGER; Extended 
Data Fig. 7d). Some non-epithelial cells also expressed these three 
genes. We further validated ACE2 expression by bulk mRNA-seq of 
sorted AT2 cells (Extended Data Fig. 7e). Immunohistochemistry 
with antibodies used previously to block cellular viral entry specifi-
cally labeled adult pro-SFTPC+ AT2 cells (Extended Data Fig. 7c, 
Supplementary Table 6 and Methods).

Previous studies revealed that ACE2 is highly enriched in nasal 
and intestinal mucous cells13,14. While mucous cells are relatively 
rare in healthy surface airway epithelium, they are abundant in sub-
mucosal glands (SMGs). Analysis by scRNA-seq of microdissected 
SMGs from healthy donors showed enrichment of ACE2, TMPRSS2 
and CTSL in mucous cells (Extended Data Fig. 7f). In situ analysis 
confirmed the presence of ACE2 transcripts in acinar epithelial cells 
of the SMGs (Extended Data Fig. 7g) and cells expressing ACE2 in 
the large airway epithelium (Extended Data Fig. 7).

Association of ACE2, TMPRSS2 and CTSL expression in lung 
and airway cells with age, sex and smoking. We next asked how 
the expression of ACE2, TMPRSS2 and CTSL in specific cell subsets 
relates to three key covariates associated with more severe disease: 
age (older individuals), sex (males) and smoking28. As no single 

Fig. 1 | A cross-tissue survey of ACE2+TMPRSS2+ cells shows enrichment in cells at reported sites of disease transmission or pathogenesis.  
a,b, Double-positive cells were more prevalent in epithelial organs and cells. a, Proportion of ACE2+TMPRSS2+ cells per dataset (dots) from 21 tissues 
and organs (rows). b, Proportion of ACE2+TMPRSS2+ cells within cell clusters (dots) annotated by broad cell-type categories (rows) within each of the 
top seven enriched datasets. SMcs, smooth muscle cells. c,d, Significant coexpression of ACE2+TMPRSS2+ or ACE2+CTSL+ highlights cells from tissues 
implicated in transmission or pathogenesis. Significance of coexpression (dot size; −log10 adjusted (adj.) P value), by two-sided Wald test (Methods); red 
border: false discovery rate (FDr) < 0.1) of ACE2+TMPRSS2+ (c) or ACE2+CTSL+ (d) and effect size (dot color, color bar) for finely annotated cell classes 
(columns) from diverse tissues (rows). Only tissues and cells in at least one significant coexpression relationship are shown (Methods). PDAc, pancreatic 
ductal adenocarcinoma; cD–Pc, collecting duct principal cell; PEc, parietal epithelial cell; PcT, proximal convoluted tubule; TA, transit amplifying.  
e–h, In situ validation of double-positive cells in the lung, airways and SMGs (n = 3 donors per experiment, images of three randomly chosen areas per 
donor). Proximity ligation in situ hybridization (PLISh) and immunostaining (e and g) and quantification (error bars: standard errors; f and h) in human 
adult lung alveoli for ACE2 (white), TMPRSS2 (green) and CTSL (e) (red; total of 1,487 DAPI-positive cells examined for quantification (f)) and ACE2 
(white), TMPRSS2 (green) and hTII-280 (g) (red; total of 482 hTII-280-positive cells examined for quantification (h)).
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dataset to date was sufficiently large, we aggregated samples across 
31 scRNA-seq and snRNA-seq studies (Supplementary Table 2; 14 
published16,18,29–38; 17 not yet published39,40 at the time of writing). 

This analysis spanned 1,320,896 cells from 228 individuals with-
out known lung disease or from histologically normal-appearing 
lung adjacent to the site of disease, across 377 nasal, lung and  
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airway samples from brushes, scrapings, biopsies, bronchoalveolar 
lavages, resections or entire lungs that could not be used for trans-
plant or postmortem examinations (Fig. 3a). From unpublished 
data, we only obtained single-cell expression counts for the three 
genes (preprocessed by each data generator), total unique molecu-
lar identifier (UMI) counts per cell, cell identity annotations (which 
we harmonized to three resolution levels across studies; Fig. 3a,b, 
Supplementary Table 2, Extended Data Fig. 8 and Methods), and 
age, sex and smoking status (when ascertained). We modeled the 
association between the expression counts of each gene and age, sex 
and smoking status using a generalized linear model, accounting for 
technical variation arising from dataset-related factors and covari-
ate interactions (Methods). We fitted this model within each cell 
type to non-fetal lung data of donors for whom smoking history was 
known (985,420 cells, 286 samples, 164 donors, 21 datasets) and fit-
ted a model without smoking status covariates to the full non-fetal 
lung data (1,096,604 cells, 309 samples, 185 donors, 24 datasets).

For simplicity, we treated each cell as an independent observa-
tion. This implicitly combines variability in both donors and cells, 
and, because cells from the same donor are not truly independent 
observations, can result in inflated P values, especially when there 
are few donors for a particular cell type. To address this, account for 
covariate interactions and ensure robustness, we (1) used a simple 
noise model (Poisson) to reduce overfitting of donor variability; (2) 
confirmed that effect directions of significant associations were con-
sistent in a pseudo-bulk analysis (modeling only donor variation; 
Methods and Supplementary Data 1–4); (3) confirmed summarized 
age, sex and smoking associations with a model including interac-
tion terms (Methods and Supplementary Data 1–4); and (4) sepa-
rated significant associations that passed all above confirmations 
into ‘robust trends’ and ‘indications’ depending on their robustness 
to holding out individual datasets (Methods and Supplementary 
Data 1–4). We focused on trends or indications in cell types where 
ACE2 and TMPRSS2 were coexpressed (Fig. 3c): airway epithelial 
cells (basal, multiciliated and secretory cells), AT1 and AT2 cells 
and SMG secretory cells.

We found robust trends of ACE2 expression with age, sex and 
smoking status in these cell types (Fig. 3d, Extended Data Fig. 9  
and Supplementary Figs. 4–6; nonsmoking model results in 
Supplementary Figs. 7–10): ACE2 expression increased with age 
in AT2 cells, and was elevated in males in airway secretory cells 
and AT1 and AT2 cells. ACE2 levels were higher in past or cur-
rent smokers in basal and submucosal secretory cells, and lower in 
AT2 cells (Fig. 3d). Analysis of bulk RNA-seq data from bronchial 
brushings41 indicated an upregulation of both ACE2 and TMPRSS2 
in current smokers compared with former smokers (Extended Data 
Fig. 10). Furthermore, we found indications of increased ACE2 
expression with age and in males in multiciliated cells, but those 
relied on inclusion of the dataset with the most cells and samples 
(‘regev/rajagopal’; Extended Data Fig. 9 and Methods). All above 

trends and indications for sex and age were validated in a simpli-
fied model without smoking status on the full non-fetal lung dataset 
(Supplementary Fig. 7, Supplementary Data 5–8 and Methods).

Examining joint trends of ACE2 and the protease genes within 
the same cell type, we found robust trends of ACE2 and TMPRSS2 
coexpression increasing with age in AT2 cells, in males in AT1 
cells, and an indication of the two genes being elevated in males in 
multiciliated cells (ACE2 indication dependent on the ‘regev/raja-
gopal’ dataset; Fig. 3d and Extended Data Fig. 9). ACE2 and CTSL 
showed robust trends of joint upregulation in males in AT2 cells, 
and in smokers in submucosal secretory cells. Indications of joint 
upregulation of these genes were found in males in AT1 cells, and in 
smokers in basal cells (Fig. 3d, Extended Data Fig. 9 and Methods). 
All joint trends for age and sex covariates were confirmed on the full 
non-fetal lung data using the simple model without smoking covari-
ates (Supplementary Fig. 7).

An immune gene program in ACE2+TMPRSS2+ cells in airway, 
lung and gut. Our previous analyses revealed immune signaling 
genes that covary with ACE2 and TMPRSS2 in airway and lung 
cells13,14. To explore these in a broader context, we identified tissue 
and cell programs related to double-positive ACE2+TMPRSS2+ cells 
in the nasal epithelium, lung and gut (Supplementary Tables 7–10). 
Tissue programs are shared across double-positive cells from differ-
ent cell types in one tissue; cell programs distinguish double-positive 
cells from the rest of the cells of the same type (Methods).

Tissue programs were enriched in pathways related to viral 
infection and immune response, including phagosome structure, 
antigen processing and presentation, and apoptosis (Fig. 4a,b, 
Supplementary Fig. 11a,b (for selected genes) and Supplementary 
Tables 7–10). These included CEACAM5 (lung, nasal and gut pro-
grams) and CEACAM6 (ref. 42; lung), surface attachment factors for 
coronavirus S protein; SLPI (lung and nasal)43; PIGR (lung and gut; 
may promote antibody-dependent enhancement via IgA44); and 
CXCL17 (lung and nasal)45. Tissue programs also had genes associ-
ated with cholesterol and lipid metabolic pathways and endocytosis 
(DHCR24, LCN2 and FASN), major histocompatibility complex I 
and II pathways46, preparation against cellular injury (interferons; 
extracellular RNase: PLAC8 and TXNIP), complement (C3 and 
C4BPA), immune modulation (BTG1) and tight junctions (DST, 
CLDN3 and CLDN4).

Cell programs (Fig. 4c,d, Supplementary Fig. 12a–c and 
Supplementary Tables 7–10) were enriched in many of the same 
genes and pathways (for example, CEACAM5, CXCL17 and SLPI), 
and further captured unique functions, including tumor necrosis 
factor (TNF) signaling in lung secretory cells (for example, RIPK3; 
ref. 47), lysosomal functions in lung secretory and multiciliated cells48, 
the immunoproteasome (AT1 cells; Fig. 4c), cytokines, chemokines 
and their receptors (nasal goblet cells: CSF3, CXCL1, CXCL3, IL19 
and CCL20; AT1 cells: IL1R1) and genes that encode surfactant  

Fig. 2 | ACE2–protease coexpression and SARS-CoV-2 S-protein cleavage sites suggest a possible role for additional proteases in infection. a, Multiple 
proteases were coexpressed with ACE2 in human lung scrNA-seq data. Scatterplot of significance (−log10 adj. P value), by two-sided Wald test (Methods) 
and effect size of coexpression of each protease gene (dot) with ACE within each indicated epithelial cell type (color). Dashed line: significance threshold. 
TMPRSS2 and PcSK proteases that were significantly coexpressed with ACE2 are marked. b, ACE2–protease coexpression with PcSKs, TMPRSS2 and CTSL 
across lung cell types. Significance (dot size; −log10 (adj. P value), by two-sided Wald test. (Methods)) and effect size (color) for coexpression of ACE2 
with selected proteases (columns) across cell types (rows). NK, natural killer. c,d, Multiple proteases were expressed across lung cell types. c, Distribution 
of non-zero expression for AC2, PCSK and TMPRSS2 across lung cell types. White dot: median non-zero expression. d, Proportion of cells expressing 
ACE2, PCSK or TMPRSS2 across lung cell types, ordered by compartment. e, ACE2+PCSK+ double-positive cells across lung cell types. Fraction of different 
ACE2+PCSK+ or ACE2+TMPRSS2+ double-positive cells across lung cell types. Dots: different samples; line: median of non-zero fractions. f, ACE2–protease 
coexpression analysis for the 20 most significant human proteases in AT2 cells. Significance (dot size; −log10 (adj. P value), by two-sided Wald test 
(Methods)) and effect size (color) for coexpression of ACE2 with different proteases (columns) across cell types (rows). g, Additional protease expression 
in ACE2+TMPRSS2+ double-positive cells. Significance (−log10 adj. P value, by two-sided Wald test (Methods)) and fold change of differential expression for 
each human protease between ACE2+TMPRSS2+ double-positive versus double-negative cells within each indicated epithelial cell type (color). Significantly 
differentially expressed proteases within AT2 cells and PcSK across all epithelial cell types are highlighted.
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proteins (AT2 cells: SFTPA and SFTPA2). Cell programs from mul-
tiple tissues (Fig. 4c,d) included genes related to TNF signaling, rais-
ing the possibility that anti-TNF therapy may impact the expression 
of ACE2 and/or TMPRSS2. Some of the genes encode proteins that 
are targets of known drugs49 (for example, in lung secretory cells: C3, 

HDAC9, IL23A, PIK3CA, RAMP1 and SLC7A11), and other gene 
products have been shown to interact with SARS-CoV-2 proteins50, 
for example, GDF15 (ref. 51), a central regulator of inflammation52, 
and yet others may be related to COVID-19 pathological features, 
including MUC1 (ref. 53; in tissue and specific cell programs), IL6ST 
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Fig. 3 | ACE2, TMPRSS2 and CTSL expression increases with age and in men, and shows cell-type-specific associations with smoking. a, Samples in the 
aggregated lung and airway dataset partitioned to several classes by their cell composition. Percentage of cells by level 2 cell annotations (annotations with 
a preceding ‘1’ indicate coarse annotations of cells that had no annotation at level 2) across samples. The 377 samples were ordered by sample composition 
clusters (Methods). b, Schematic of key lung and airway epithelial cell types. c, Distribution of normalized ACE2 and TMPRSS2 expression across level 3 lung 
cell types in 1,031,254 cells from 228 donors. red shading indicates the main cell types that expressed both ACE2 and TMPRSS2. d, Age, sex and smoking 
status associations with expression of ACE2 (blue), TMPRSS2 (orange) and CTSL (green) in level 3 epithelial cells. The effect size of the association is given 
as a log fold change (sex and smoking status) or the slope of log expression per year with age. As the age effect size is given per year, it is not directly 
comparable to the sex and smoking status effect sizes. Positive effect sizes indicate increases with age, in males, and in smokers. colored bars: associations 
with an FDr-corrected P value < 0.05 (one-sided Wald test on regression model coefficients), consistent effect direction in pseudo-bulk analysis, and 
consistent results using the model with interaction terms (Methods). White bars: associations that did not pass all of the three above-mentioned evaluation 
criteria. Error bars: standard errors around coefficient estimates. Error bars are only shown for colored bars (indications or robust trends). Number of cells 
and donors, respectively, for each cell type: basal: 155,877 and 105; multiciliated lineage: 37,530 and 157; secretory: 22,306 and 140; rare: 2,676 and 71; 
submucosal secretory: 33,661 and 45; AT1: 29,973 and 101; AT2: 155,512 and 104. Ec: endothelial cell; MDc: monocyte-derived cell.
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Fig. 4 | tissue- and cell-type-specific gene modules in ACE2+TMPRSS2+ cells highlight immune and inflammatory features. a,b, Tissue programs of ACE2+ 
TMPRSS2+ cells in lung, gut and nasal samples. a, Selected tissue program genes. Node: gene; edge: program membership. Genes were selected heuristically 
for visualization (Methods). b, Enrichment was tested using a hypergeometric test exactly as performed by gprofiler in scanpy.queries.enrich (−log10 adj.  
P value) of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway gene sets in the full tissue programs. c–e, cell programs of ACE2+TMPRSS2+ cells. 
c,d, Top 12 genes from each cell program recovered for different lung (c) or nasal (d) epithelial cell types (nodes; colors). colored concentric circles: overlap 
with a gene in the top 250 significant genes in other cell types. ACE2 and TMPRSS2 were included even if not among the top 12 genes. e, Enrichment (−log10 
adj. P value) of KEGG disease and non-disease pathway gene sets in either highly significant genes across all tissues (top) or in specific tissues (lung and 
nose; bottom). f, Motif activity in immune transcription factors in ACE2+ cells. Significance (−log10 adj. P value) of the top ten differential ‘motif activity scores’ 
(Methods) between epithelial ACE2+ cells or ACE2− cells. Epithelial cells are: AT1, AT2, secretory, ciliated, ionocytes and neuroendocrine cells (highlighted in 
the gray shaded area in Supplementary Fig. 1a). n = 2 locations: primary carina and lung lobes; n = 3 samples per location; n = 1 patient. Motifs were extracted 
from the JASPAr2020 database, and the motif code is shown in each row. Dashed line: threshold for significance (adj. P value of 0.05). P values were 
calculated by logistic regression and likelihood ratio test, adjusted through Bonferroni correction (Methods).
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(lung tissue and gut enterocyte programs) and IL6 (AT2 program; 
Supplementary Fig. 12d). Other cell types, such as heart pericytes, 
were enriched for cells coexpressing ACE2 with IL6R or IL6ST 
(Supplementary Fig. 13). The immune-like programs of ACE2+ 
epithelial cells were also reflected in the regulatory features of the 
ACE2 locus by scATAC-seq (Fig. 4f). Cell–cell interaction analysis54  
(Methods) predicted interactions (Supplementary Table 11) 
between AT2 cells (overall or ACE2+TMPRSS2+) and myeloid cells 
through oncostatin, complement, interleukin (IL)-1 receptor and 
colony-stimulating factor signaling.

Conserved expression patterns in mouse models. Preclinical  
studies of SARS-CoV-2 infection and treatment require model sys-
tems that approximate human physiology. Transgenic mouse models 
that express human ACE2 (hereafter, hACE2) have been identified 
as a valuable resource to evaluate diverse therapeutics for COVID-19 
(ref. 55). We thus asked whether expression patterns of SARS-CoV-2 
entry factors were similar in human and mouse model cell types  
of interest.

Ace2+Tmprss2+ and Ace2+Ctsl+ double-positive cells were present 
primarily in club and multiciliated cells in the airway epithelia of 
healthy mice56 (Fig. 5a), consistent with human airways (Extended 
Data Fig. 3a), and increased from 2 to 4 months of age(Fig. 5a,b). 
Moreover, the expression patterns observed in scRNA-seq data 
of whole lungs from mice exposed daily to cigarette smoke for 2 
months (Fig. 5c–k and Methods) are consistent with our obser-
vations in human airway epithelial cells (Fig. 3d and Extended Data 
Fig. 9a). Upon smoke exposure, there was a significant increase in 
the number Ace2+ cells and Ace2 expression in airway secretory cell 
numbers, but not AT2 cells (Fig. 5f–i). There was also agreement in 
expression patterns between the human placenta and mouse pla-
centa development (Figs. 1c,d and 5l and Supplementary Fig. 14).

discussion
To the best of our knowledge, this study represents the first 
single-cell meta-analysis. Our meta-analysis provided the required 
power to uncover age, sex and smoking associations at single-cell 
resolution. The contrasting smoking associations of ACE2 across 
epithelial cell types show the importance of single-cell resolution, 
as downregulation in AT2 cells would have been otherwise masked 
by increases in airway epithelial signal in bulk RNA-seq57. Although 
we have aggregated over 200 donors in our dataset, effects such as 
race, ethnicity, genetic ancestry, cumulative smoking or healthy tis-
sue with a distal disease site may still confound the associations we 
have obtained.

Our models included tested covariates, technical covariates and 
interaction terms, allowing us to uncover complex associations (for 
example, sex and smoking associations are typically stronger for 
younger individuals; Supplementary Fig. 5). Modeling the smoking 
status of a donor was important to reduce background variation and 
account for the unbalanced distribution of covariates. Fitting this 
model required aggregating many datasets, harmonized by a consis-
tent cell-type annotation. However, the annotation remains coarse in 
some cases, where cell labels still aggregate over considerable diver-
sity, and can be further refined in the future. As the HCA grows and 
further datasets become available, our model could be extended to 
allow nonlinear associations with the tested covariates. Such associa-
tions may uncover, for example, distinct effects in the particularly 
affected geriatric population. While there is a trend of an increased 
proportion of ACE2+TMPRSS2+ cells with age (Extended Data  
Fig. 3b,c), this cannot be modeled reliably given the compositional 
diversity (Fig. 3a and Supplementary Fig. 15), potential confounders  
and limited sample sizes. Further metadata can help to address this.

Our findings in human and mouse models are consistent with 
respect to smoking and age associations. In line with our human 
data, we find an increase in Ace2 expression in maturing mice  
(2–4 months). Others have reported lower expression of entry fac-
tors in aged mice (24 months), showing potential limitations of 
mice as a model system58.

Our comprehensive cross-tissue analysis expands on our13,14,16,59 
and others60–62 earlier efforts, identifying cell subsets across tissues 
that may be implicated in transmission or pathogenesis. For exam-
ple, double-positive cells in the SMGs may be a reservoir for viruses 
that escape from expulsion associated with severe cough in the air-
way luminal surface. Another intriguing hypothesis is that neuro-
logical symptoms63–65 and Guillain–Barré syndrome66 may arise as 
an autoimmune response to myelin antigens expressed by infected 
ACE2+TMPRSS2+ and ACE2+ cells that express myelin-producing 
genes (Supplementary Fig. 2 and Supplementary Table 7).

ACE2 and TMPRSS2 expression in lung, nasal and gut epithe-
lial cells is associated with programs involving key immunological 
genes and genes related to viral infection. Expression of IL6, IL6R 
and IL6ST in lung epithelial cells raises the hypothesis that infec-
tion may trigger uncontrolled cytokine expression, as IL-6 levels 
were reported to increase with COVID-19 severity67. The predic-
tion of TNF, complement and IL-1 pathways may suggest a ben-
efit for therapies that target these axes. The accessibility of binding 
sites for the transcription factors STAT and IRF in scATAC-seq 
data is consistent with interferon regulation of ACE2 expression in  
epithelial cells14 and with high activity of STAT1, STAT2, IRF1, IRF2, 

Fig. 5 | Ace2, Tmprss2 and Ctsl expression in mouse in similar cell types, and follows similar patterns with age and smoking. a, Gradual increase in 
Ace2 expression by airway epithelial cell type with age. Mean expression of Ace2 in different airway epithelial cells of mice of three consecutive ages. 
Shown are replicate mice (dots; n = 3 for each age), mean (bar) and error bars (s.e.m.). The effect of mouse age was tested using a two-sided Wald test 
(P values). TPM, transcripts per million. b, Increase in proportion of Ace2+Ctsl+ goblet and club cells with age. Percentage of Ace2+Ctsl+ cells in different 
airway epithelial cell types of mice of three consecutive ages. The effect of mouse age was tested using a Wald test (P values). c–k, Increase in Ace2 
expression in secretory cells with smoking. Mice were exposed daily to cigarette smoke (cS) or filtered air (FA) as control for 2 months after which 
cells from whole-lung suspensions were analyzed by scrNA-seq (Drop-seq). AM, alveolar macrophages; IM, interstitial macrophages; Dc, dendritic 
cells; LEc, lymphatic endothelial cells; cEc, capillary endothelial cells; Ec, endothelial cells; Mono, monocytes. c,d, Uniform manifold approximation and 
projection analysis of scrNA-seq profiles (dots) colored by experimental group (c) or by Ace2+ cells and indicated double-positive cells (d). AT1 and 
AT2 cells and airway epithelial secretory and ciliated cells are marked by the red dashed line. Macro, macrophage; mono, monocyte. e, Marker genes 
of AT1, AT2, multicilitated and secretory cell clusters. f, The relative frequency of Ace2+ cells is increased by smoking in airway secretory cells but not 
AT2 cells. relative proportion of Ace2+ and Ace2− cells in smoke-exposed and control mice of different cell types (FA: n = 9 mice; cS: n = 5 mice; error 
bars represent 95% confidence intervals). g,h, Expression of Ace2 was increased in airway secretory cells (FA: 187 cells; cS: 62 cells), but not in AT2 
cells (FA: 3,808; cS: 1,882). Distribution of Ace2 expression in secretory (g) and AT2 (h) cells from control and smoke-exposed mice (P value derived 
from a Wilcoxon rank-sum test; NS, not significant). i–k, reanalysis of published bulk mrNA-seq69 of lungs exposed to different daily doses of cS show 
increased expression of Ace2 (i), Tmprss2 (j) and Ctsl (k) after 5 months of chronic exposure; n = 8 mice per condition. Bars show the mean, and error bars 
show the standard error (**P = 0.0046, ***P = 0.0002 and ****P < 0.0001; one-way ANOVA with Dunnett’s multiple comparisons test, compared to FA 
group.) l, Expression in placenta. Mean expression (color) and proportion of expressing cells (dot size) of Ace2, Tmprss2 and Ctsl along with marker genes 
(Supplementary Fig. 14) in single- and double-positive cells from embryonic day (E) 9.5 to E18 of mouse placenta development.
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IRF5, IRF7, IRF8 and IRF9 in macrophage states, which increased 
in patients with severe COVID-19 (ref. 68). Future lines of inquiry 
could include investigating the impact of lysosomal genes in lung 
secretory and multiciliated cells on viral infection and of RIPK3 
expression in airway cells on necroptosis.

Finally, the expression of other potential accessory proteases 
may help pursue therapeutic hypotheses related to disruption of 
viral processing via protease inhibition. FURIN, PCSK5 and PCSK7 

are more broadly expressed than TMPRSS2 across lung cell types 
(Fig. 2d) and across tissues (Extended Data Fig. 6i). Viral proteins 
may physically interact with PCSK6 (ref. 50), which is signifi cantly 
coexpressed with ACE2 in AT2 cells (Fig. 2b and Extended Data  
Fig. 6b). Because PCSK proteases are localized in different  
membrane compartments27, they might process SARS-CoV-2 S 
proteins at different viral stages. Altogether, this could provide 
SARS-CoV-2 with immense flexibility in entry and egress.
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Our meta-analysis provides a detailed molecular and cellular 
map to aid in our understanding of SARS-CoV-2 transmission, 
pathogenesis and clinical associations. We herein demonstrated 
how this can be done despite restrictions on data sharing. As the 
HCA progresses, we envision such meta-analyses in the context 
of other diseases, for example, by combining large healthy refer-
ence atlases with both epidemiological and genetic risk factors. In  
parallel, as new atlases are generated from COVID-19 tissues and 
models, their integration will further advance our understanding 
of this disease.
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Methods
Patient samples. Sample collection underwent Institutional Review Board 
(IRB) review and approval at the institutions where the samples were originally 
collected. ‘Adipose_healthy_manton_unpublished’ was collected under IRB no. 
2007P002165/1 (ORSP-3877). Tissue samples from breast, esophagus muscularis, 
esophagus mucosa, heart, lung, prostate, skeletal muscle and skin, referred to as 
‘tissue_healthy_regev_snRNA-seq_unpublished’, were collected under ORSP-3635. 
Samples referred to as ‘eye_sanes_unpublished’ were collected under Dana-Farber/
Harvard Cancer Center protocol no. 13-416 and Massachusetts Eye and  
Ear protocol no. 18-034H. Samples referred to as ‘kidney_healthy_greka_
unpublished’ were collected under Massachusetts General Hospital IRB no. 
2011P002692. Samples referred to as ‘liver_healthy_manton_unpublished’ 
were collected under IRB no. 02-240/ORSP-1702, as well as ORSP-2630 under 
ORSP-2169. Lung samples from smokers and non-smokers (41 samples from ten 
patients, 2–6 locations each) with the suffix ‘regev/rajagopal_unpublished’  
were collected under Massachusetts General Hospital IRB no. 2012P001079/
ORSP-3900 under ORSP-3490. Healthy and fibrotic lung samples with the suffix 
‘xavier_snRNA-seq_unpublished’ were collected under Massachusetts General 
Hospital IRB no. 2003P000555 (CG-5242 under ORSP-3490), and Medoff no. 
2015P000319 (CG-5145 under ORSP-3490). Pancreatic ductal adenocarcinoma 
samples were collected under C. Fernandez-del Castillo, 2003P001289  
(CG-4692) under ORSP-3490 at Massachusetts General Hospital. Samples in 
the dataset ‘barbry’ were derived from a study that was approved by the Comité 
de Protection des Personnes Sud Est IV (approval no. 17/081), and informed 
written consent was obtained from all participants involved. All experiments 
were performed during 8 months, in accordance with relevant guidelines and 
French and European regulations. No deviations were made from our approved 
protocol named 3Asc (An Atlas of Airways at a single-cell level: NCT03437122). 
Lungs with chronic obstructive pulmonary disease and idiopathic pulmonary 
fibrosis in the ‘kaminski’ dataset were obtained from patients undergoing 
transplant, while healthy lungs were obtained from rejected donor lung organs 
that underwent lung transplantation at the Brigham and Women’s Hospital or 
donor organs provided by the National Disease Research Interchange. Patient 
tissues relating to the dataset ‘krasnow’ were obtained under a protocol approved 
by Stanford University’s Human Subjects Research Compliance Office (IRB no. 
15166), and informed consent was obtained from each patient before surgery. 
The study protocol was approved by the Partners Healthcare IRB (protocol no. 
2011P002419). Samples in the dataset ‘kropski_banovich’ were collected under 
Vanderbilt IRB nos. 060165 and 171657, and Western IRB no. 20181836 (ethics 
approval no. 2018/769-31). ‘Meyer_b’ samples were collected by the Cambridge 
Biorepository for Translational Medicine, under research ethics committee 
(REC) approval no. 15/EE/0152. Samples in the dataset ‘linnarsson’ are covered 
by 2018/769-31, approved by the Swedish Ethical Review Authority. Samples 
in the ‘misharin’ dataset were collected under STU00056197, STU00201137 
and STU00202458 and approved by the Northwestern University IRB. Samples 
in the ‘rawlins’ dataset were obtained from terminations of pregnancy from 
Cambridge University Hospitals NHS Foundation Trust under permission from 
NHS Research Ethical Committee (96/085) and the Joint MRC/Wellcome Trust 
Human Developmental Biology Resource (grant no. R/R006237/1; www.hdbr.
org; REC approval nos. 18/LO/0822 and 18/NE/0290). The studies relating to 
datasets ‘schultze’ and ‘schultze_falk’ were approved by the ethics committees of 
the University of Bonn and University Hospital Bonn (local ethics vote no. 076/16) 
and the Medizinische Hochschule Hannover (local ethics vote no. 7414/2017). 
Fifteen human tracheal airway epithelia in the ‘schultze’ dataset were isolated 
from de-identified donors whose lungs were not suitable for transplantation. Lung 
specimens were obtained from the International Institute for the Advancement of 
Medicine and the Donor Alliance of Colorado. The National Jewish Health IRB 
approved the research under protocol nos. HS-3209 and HS-2240. Samples in the 
‘xu/whitsett’ dataset were provided through the federal United Network of Organ 
Sharing via the National Disease Research Interchange and International Institute 
for Advancement of Medicine and entered into the National Heart, Lung and 
Blood Institute (NHLBI) LungMAP Biorepository for Investigations of Diseases 
of the Lung at the University of Rochester Medical Center, overseen by the IRB as 
RSRB00047606 (Supplementary Tables 1 and 2).

Integrated analysis of published datasets. Publicly available (Supplementary 
Table 1) single-cell RNA-seq datasets were downloaded from the Gene Expression 
Omnibus (GEO). We searched the GEO for datasets that met the following criteria: 
(1) provided unnormalized count data; (2) were generated using the 10x Genomics 
Chromium platform; and (3) profiled human samples. These samples spanned a 
wide range of tissues, including primary tissues, cultured cell lines and chemically 
or genetically perturbed samples. Applying these filters increases standardization 
of sample as the vast majority were prepared using the same 10x Chromium 
instrument and Cell Ranger pipelines.

Datasets comprise one or more samples (individual gene expression matrices), 
which often correspond to individual experiments or patient samples. In total, this 
yielded 2,333,199 cells from 469 samples from 64 distinct datasets (Supplementary 
Table 1). To allow comparison across samples and datasets, we mapped genes using 
a common dictionary of gene symbols and excluded unrecognized symbols. If a 

gene from an aggregated master list was not found in a sample, the expression was 
considered to be zero for every cell in that sample.

After all datasets were collected, we quantified the percentage of cells with >0 
UMIs for both ACE2 and TMPRSS2 or ACE2 and CTSL. For further analyses with 
broad cell classes, we only used datasets with more than 15 double-positive cells 
yielding 252,871 cells from 40 samples.

For integration across datasets, we used two levels of annotations. When 
possible, every sample was annotated with its tissue of origin based on the 
available metadata from the GEO. We excluded any sample for which tissue was 
not specified. For the smaller subset of 252,871 cells, we manually annotated 
cell clusters with broad cell-type classes using marker genes. These clusters were 
generated using the harmony-pytorch Python implementation (v0.1.1; https://
github.com/lilab-bcb/harmony-pytorch/) of the Harmony scRNA-seq integration 
method70 for batch correction and leiden clustering from the Scanpy package 
(v1.4.5). Clusters without clear markers distinguishing types were excluded from 
further analysis.

Data were processed using Scanpy. Individual datasets were log normalized 
(UMIs/10,000 + 1) by column sum and the log1p function (ln(10,000 × gij + 1), 
where a gene’s expression profile, g, is the result of the UMI count for each 
gene, i, for cell j, normalized by the sum of all UMI counts for cell j. This data 
normalization step was only used for generating the clusters and cell-type 
annotations.

All other statistical tests for the integrated analysis were performed on the 
cell’s binary classification as double positive or not. For example, for a cell to be 
considered ACE2+, it has >0 ACE2 transcripts. Double-positive cells have >0 
transcripts for both genes of interest. We used Fisher’s exact test to determine the 
statistical dependence between the expression of ACE2 and TMPRSS2 or CTSL and 
corrected for multiple testing using the Benjamin–Hochberg method over all tests 
for each gene pair.

Bronchial brushings from current and former smokers. Bronchial brushings 
were obtained from high-risk individuals undergoing lung cancer screening at 
~1-year intervals by white light and autofluorescence bronchoscopy and computed 
tomography (n = 137 brushings from n = 50 patients; GSE109743) and profiled via 
RNA-seq as described previously41. Differential expression analysis of entry factors 
in former and current smokers was performed via voom-limma51 using the model:

Yi  smokingþ batchþ TINþ 1 patientjð Þ;

where smoking denotes the encoded smoking status (‘current’ or ‘former’), batch 
refers to the experimental batch effect derived from the sequencing run, TIN 
represents the RNA integrity score, and (1|patient) is a random intercept per 
patient. Multiple-testing correction was performed via Benjamini–Hochberg to 
obtain an FDR-corrected P value.

Integrated coexpression analysis of high-resolution cell annotations across 
tissues. We compiled a compendium of published and unpublished datasets 
consisting of 2,433,890 cells from 21 tissues and/or organs including adipose, bone 
marrow, brain, breast, colon, cord blood, ENS, esophagus mucosa, esophagus 
muscularis, anterior eye, heart, kidney, liver, lung, nasal, olfactory epithelium, 
pancreas, placenta, prostate, skeletal muscle and skin. After the harmonization of 
cell-type annotations, ACE2-TMPRSS2 and ACE2-CTSL expression were assessed 
using a logistic mixed-effect model:

Yi  ACE2þ 1jsample idð Þ ð1Þ

where Yi was the binarized expression level of either TMPRSS2 or CTSL, and 
covariates were binarized ACE2 expression in cell i and a sample-level random 
intercept.

Models were fit separately for each cell type in each dataset. To avoid spurious 
associations in cell types with very few ACE2+ cells and due to very low expression 
of ACE2, we subsampled ACE2− cells to the number of ACE2+ cells within each 
cell type and discarded cell types containing fewer than five cells expressing 
either ACE2 or the other gene being tested after the subsampling procedure. The 
significance of the association between ACE2 and TMPRSS2/CTSL was controlled 
for 10% FDR using the statsmodels Python package (v0.11.1)71. Data processing 
was performed using Scanpy (v1.4.6)72, and logistic models were fit using lme4 R 
package (v1.1.21)73.

Single-cell ATAC-sequencing analysis. Library generation and sequencing. We 
performed single-cell ATAC-seq from primary carina and subpleural parenchyma 
of one individual (n = 3 samples per location). Libraries were generated using the 
10x Chromium Controller and the Chromium Single Cell ATAC Library & Gel 
Bead Kit (1000111) according to the manufacturer’s instructions (CG000169-Rev 
C; CG000168-Rev B) with unpublished modifications relating to cell handling and 
processing. Briefly, human lung-derived primary cells were processed in 1.5 ml 
DNA LoBind tubes (Eppendorf), washed in PBS via centrifugation at 400g for 
5 min at 4 °C and lysed for 3 min on ice before washing via centrifugation at 500g 
for 5 min at 4 °C. The supernatant was discarded and lysed cells were diluted in 
1× diluted nuclei buffer (10x Genomics) before counting using trypan blue and a 
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Countess II FL Automated Cell Counter to validate lysis. If large cell clumps were 
observed, a 40-µm Flowmi cell strainer was used before the tagmentation reaction, 
followed by Gel Bead-In-Emulsion generation and linear PCR as described in the 
protocol. After breaking the emulsion, the barcoded tagmented DNA was purified 
and further amplified to enable sample indexing and enrichment of scATAC-seq 
libraries. The final libraries were quantified using a Qubit dsDNA HS Assay kit 
(Invitrogen) and a High Sensitivity DNA chip run on a Bioanalyzer 2100 system 
(Agilent).

All libraries were sequenced using NextSeq High Output Cartridge kits 
and a NextSeq 500 sequencer (Illumina), and 10x scATAC-seq libraries were 
characterized by paired-end sequencing (2 × 72 cycles).

Initial data processing and quality control. Fastq files were demultiplexed using 
10x Genomics Cell Ranger ATAC mkfastq (v1.1.0). We obtained peak-barcode 
matrices by aligning reads to GRCh38 (CR v1.2.0 pre-built reference) using Cell 
Ranger ATAC count. Peak-barcode matrices from six channels were normalized 
per sequencing depth and pooled using the Cell Ranger ATAC command ‘aggr’.

The aggregated, depth-normalized, filtered dataset was analyzed with Signac 
(v0.1.6; https://github.com/timoast/signac/), a Seurat74 extension developed 
for the analysis of scATAC-seq data. All the analyses in Signac were run with 
a random number generator seed set as 1234. Cells that appeared as outliers 
in quality-control metrics (peak_region_fragments ≤ 750 or peak_region_
fragments ≥ 20,000 or blacklist_ratio ≥ 0.025 or nucleosome_signal ≥ 10 or TSS.
enrichment ≤ 2) were excluded from the analysis.

Normalization and dimensionality reduction. The aggregated dataset was processed 
with latent semantic indexing75, that is, datasets were normalized using term 
frequency–inverse document frequency. Next, singular value decomposition, ran 
on all binary features, was used to embed cells in low-dimensional space. UMAP69 
was then applied for visualization, using the first 30 dimensions of the singular 
value decomposition space.

Gene activity matrix and differential motif activity analysis. A gene activity matrix 
was calculated as the chromatin accessibility associated with each gene locus 
(extended to include 2 kb upstream of the transcription start site, as described 
in the vignette ‘analyzing PBMC scATAC-seq’ (March 13, 2020; https://satijalab.
org/signac/articles/pbmc_vignette.html), using as gene annotation the genes.gtf 
file provided together with Cell Ranger’s ATAC GRCh38-1.2.0 reference genome. 
For the motif analysis, we note that because epithelial cells with an accessible 
ACE2 locus tend to have a higher number of fragments in peaks than cells with 
inaccessible ACE2 (Supplementary Fig. 1e), consistent also with higher UMIs in 
scRNA-seq, some of the cells with inaccessible ACE2 could be false negatives, thus 
reducing our power.

Clusters were annotated using label transfer from matching scRNA  
samples or by literature/expert search of marker ‘active’ (that is, accessible) genes. 
Differential motif activity analysis was performed using Signac’s implementation  
of ChromVAR76, with motif position frequency matrices from JASPAR2020  
(ref. 77; http://jaspar.genereg.net/) selecting transcription factor motifs from 
human (species = 9606), broadly following the vignette ‘motif analysis with Signac’ 
(https://satijalab.org/signac/articles/motif_vignette.html). Cells were identified 
as positive for ACE2 and/or TMPRSS2 (that is, with the loci accessible) if at least 
one fragment was overlapping with the gene locus or within 2 kb upstream. 
Differential activity scores between epithelial cells positive for ACE2 (with the 
above-mentioned definition of ‘positive’) and nonexpressing ACE2 was performed 
with the FindMarkers function of Seurat (v3.1.1), using the test function set to 
‘LR’ (that is, logistic regression) and the number of counts per peak as the latent 
variable. The function constructs a logistic regression model predicting group 
membership based on each motif score individually and compares this to a null 
model with a likelihood ratio test. An adjusted P value is the result of Bonferroni 
correction.

Immunohistochemistry and proximity ligation in situ hybridization. PLISH 
was performed as described previously77. Briefly, frozen human trachea and 
distal lung sections were fixed with 4% paraformaldehyde for 20 min, treated 
with protease (20 μg ml−1 proteinase K for lung or pepsin for trachea for 9 min) 
at 37 °C, and dehydrated with ethanol. The sections were incubated with 
gene-specific oligonucleotides (Supplementary Table 6) in hybridization buffer 
(1 M sodium trichloroacetate, 50 mM Tris (pH 7.4), 5 mM EDTA and 0.2 mg ml−1 
heparin) for 2 h at 37 °C. Common bridge and circle probes were added to the 
section and incubated for 1 h followed by T4 ligase reaction for 2 h. Rolling circle 
amplification was performed by using phi29 polymerase (30221, Lucigen) for 
12 h at 37 °C. Fluorophore-conjugated detection probe was applied and incubated 
for 30 min at 37 °C. For the combination of PLISH and immunostaining, sections 
were incubated with primary antibody for HTII-280 (Terrace Biotech, TB-
27AHT2-280), pro-SFTPC (Millipore, ab3786) or ACTA2 (Sigma, F3777) for 1 h at 
room temperature. Sections were incubated with goat anti-mouse IgM secondary 
antibody (Thermo Fisher Scientific, A21044) or donkey anti-rabbit IgG secondary 
antibody (Thermo Fisher Scientific, A32795) for 45 min at room temperature, 
and then sections were mounted in medium containing DAPI. We imaged three 

representative areas per patient for three patients in total for the images and 
quantification shown in Fig. 1 and one representative area for a single patient for 
Extended Data Fig. 7a,c,d,g. Images were captured using an Olympus confocal 
microscope FV3000 with Olympus FLUOVIEW FV31S-SW (v2.1.1.98) using a 
×20 or ×60 objective.

Bulk mRNA sequencing of sorted cell populations from human lung. 
Human lung tissue was received from New England Donor Services under the 
Massachusetts General Hospital approved institutional review board protocol. 
Tissue was used from three individual patients with no history of lung disease or 
smoking. Primary bronchus and a piece of right lung lobe were manually dissected 
out. Single cells were dissociated in HBSS media (Sigma, 55021C) containing 
collagenase (225 units ml–1), dispase (2.5 units ml–1), elastase (2 units ml–1), pronase 
(1 mg ml–1), DNAse (1 unit ml–1) and Y-27632 (5 μM) inhibitor. Cell suspension 
was treated with ACK lysis buffer (Thermo Fisher Scientific A1049201) for 2 min 
on ice to remove red blood cells. Large airway basal cells were isolated from 
primary bronchus tissue while small airway basal cells and alveolar type 2 (AT2) 
cells were isolated from lung lobe tissue. Basal cells from both tissue suspensions 
were isolated using the anti-human CD271 MicroBeads kit (Miltenyl Biotech, 
130-099-023) following the manufacturer’s protocol. AT2 cells were isolated with 
anti-HT2-280 antibody (Terrace Biotech, TB-27AHT2-280) and anti-mouse IgM 
MicroBeads kit (Miltenyl Biotech, 130-047-301) following the manufacturer’s 
protocol. For mRNA-seq sample preparation, total RNA was isolated using 
Trizol reagent (Thermo Fisher Scientific, 15596026) following the manufacturer’s 
instructions. Quality and quantity of total RNA was assayed using Nanodrop and 
an Agilent Bioanalyzer. mRNA-seq libraries were prepared using the TrueSeq 
protocol from Illumina. For mRNA-seq analysis, the raw fastq files were mapped 
to the human genome using Tophat (with bowtie2) (version 2.1.1). The output files 
were processed through Cufflinks (version 2.2.1.3)) and Cuffdiff (version 2.2.1.6) 
to conduct differential gene expression analysis.

Transposome hypersensitive sites sequencing on human pediatric samples. 
THS-seq was performed as previously reported19 on human pediatric samples  
(full gestation, with no known lung disease) collected at day 1 of life, and again at 
14 months, 3 years and 9 years (n = 1 at each time point).

Integrated analysis for associating ACE2, TMPRSS2 and CTSL expression 
with age, sex and smoking status in nasal, airway and lung cells. To assess 
the association of age, sex, and smoking status with the expression of ACE2, 
TMPRSS2 and CTSL, we aggregated 31 scRNA-seq datasets of healthy human 
nasal and lung cells, as well as fetal samples containing the expression counts of 
only the three genes. Aggregation of these datasets was enabled by harmonizing 
the cell-type labels of individual datasets and dataset concatenation within 
Scanpy71 (v1.4.5.1). We harmonized annotations manually on the basis of provided 
cell-type labels together with data contributors using a preliminary ontology 
generated on the basis of five published datasets31–33,36,38 with three levels of 
annotations. Level 1 has the lowest resolution and distinguishes epithelial from 
stromal/mesenchymal, endothelial and immune cells. Level 2 breaks up each 
of the level 1 categories in the coarsest available further observed annotations. 
Level 3 in turn splits up the observed level 2 annotations where finer annotations 
were available (Supplementary Table 2; consent to publish was obtained from 
all contributors). To compare AT2 cells and their possible fetal progenitors, we 
mapped progenitor cells labeled ‘AT2-like’ and ‘SpC+ progenitors’ to the AT2 label. 
We further harmonized metadata by collapsing the smoking covariate into ‘has 
smoked’ and ‘has never smoked’ and by taking the mean age where only age ranges 
were given. This resulted in a dataset of 1,320,896 cells and three genes in 377 
samples from 228 donors (the cell by three-gene count matrix with annotations is 
available on the Single Cell Portal (https://singlecell.broadinstitute.org/single_cell/
study/SCP1257)). We divided the data into fetal (136,450 cells, 41 samples and 
34 donors), adult nasal (57,548 cells, 20 samples and 18 donors) and adult lung 
(1,126,898 cells, 316 samples and 187 donors) datasets based on the metadata 
provided.

To get an overview of sample diversity, we clustered the samples using the 
proportion of cells in level 2 cell types as features. Clustering was performed 
using louvain clustering (resolution of 0.3; louvain package v0.6.1) on a 
k-nearest-neighbor graph (k = 15) computed on Euclidean distances over the top 
five principal components of the cell-type proportion data within Scanpy. This 
produced four clusters. Sample cluster labels were assigned based on cell-type 
compositions and metadata for anatomical location that were obtained from the 
published datasets and via input from the data generators.

Within non-fetal datasets, we modeled the association of age, sex and smoking 
status with gene expression for ACE2, TMPRSS2 and CTSL within each cell type 
using a generalized linear model with the log total counts per cell as offset and 
Poisson noise as implemented in Statsmodels71 (v0.11.1) and using a Wald test from 
Diffxpy (www.github.com/theislab/diffxpy/; v0.7.3, batchglm v0.7.4). Specifically, 
we fit the model:

Yij  ageþ sexþ age : sexþ smoking þ sex : smokingþ age : smoking þ dataset;

ð2Þ
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which models effects of age, sex and smoking while accounting for potential 
interactions between covariates and the uneven distribution of covariates across 
the dataset. Here, Yij denotes the raw count expression of gene i in cell j; age, sex 
and smoking denote the modeled covariates; and ‘age:sex’, ‘sex:smoking’ and 
‘age:smoking’ represent the interaction terms between these covariates. The 
interaction terms model whether there is a difference in the smoking effect in 
men and women, and likewise whether the age effect is different for smokers and 
non-smokers. We included the ‘dataset’ term to model the technical variation (for 
example, sampling and processing differences) between the diverse datasets, and 
the log total count per cell was used as an offset. Here, the total counts were scaled 
to have a mean of 1 across all cells before the log was taken. Due to the inclusion of 
interaction terms, the complex interaction model (2) fits the overall effects of age 
(kage), sex (ksex) and smoking (ksmoking) as linear functions of the other two covariates, 
given by the equations:

kage sex; smokingð Þ ¼ βage þ sex βage:sex þ smoking βage:smoking;

ksex age; smokingð Þ ¼ βsex þ age βage:sex þ smoking βsex:smoking;

ksmoking age; sexð Þ ¼ βsmoking þ age βage:smoking þ sex βsex:smoking;

Here, βage and βage:sex represent the model coefficients for age and the interaction 
of age and sex in model 2, respectively, and age denotes the age covariate. Sex and 
smoking covariates were converted into a one-hot encoded format such that sex = 0 
denoted females and smoking = 0 denoted non-smokers. As linear dependencies 
on covariates can be summarized by showing two values per covariate, we 
displayed effect sizes for the overall age, sex and smoking associations by 
computing kage, ksex and ksmoking for sex ∈ {0,1}, smoking ∈ {0,1} and age ∈ {31,62} (the 
first and third quartiles of the age distribution). Standard errors for these effects 
were computed with the variance–covariance matrix Σ using SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
CTΣC

p
I

, where 
SE is the standard error and C is the vector of covariate values used to compute 
the respective overall effect (for example, kage). P values were obtained using a 
Wald test, and correction for multiple testing was performed over all tests on the 
same cell-type data using the Benjamini–Hochberg method. To fit this model, we 
pruned the data to contain only datasets that had at least two donors and for which 
smoking status metadata were provided. This resulted in a dataset of 985,420 cells 
and 286 samples from 164 donors for adult lung data. Only 15 donors remained 
for adult nasal data after this filtering, which we deemed too few to obtain robust 
results. To obtain cell-type-specific associations, the above model was fit within 
each cell type for all cell types with at least 1,000 cells.

While cells from different donors are not truly independent observations, 
model 2 treats them as such and thus models cellular and donor variation jointly. 
As donor variation tends to be larger than single-cell variation, when most cells 
come from few donors (either there are few donors, or few donors contribute most 
of the cells), this can lead to inflation of P values. To counteract this effect, we 
verified that significant associations were consistent when modeling only donor 
variation via pseudo-bulk analysis (Supplementary Data 1–4). Furthermore, we 
tested whether effects were dependent on few donors by holding out datasets.

Pseudo-bulk data were generated by computing the mean for each gene 
expression value and the number of UMIs (nUMI) covariate for cells in the same 
cell type and donor. After filtering as described above, model 2 was fit to the data 
(Supplementary Data 1–4). In contrast to the single-cell model, pseudo-bulk 
analysis underestimates certainty in modeled effects as uncertainty in the 
pseudo-bulk means are not taken into account when estimating background 
variance. Thus, we used only effect directions from pseudo-bulk analysis to 
validate single-cell associations. In further analysis, we regarded only those 
associations as confirmed by pseudo-bulk analysis, where the FDR-corrected  
P value in the single-cell model was below 0.05, and the sign of the estimated  
effect was consistent in both the single-cell and the pseudo-bulk analysis.

We further separated significant associations into robust trends and 
indications depending on the holdout analysis. A significant association was 
regarded as a robust trend if the effect direction is consistent when holding 
out any dataset when fitting the model (without considering the P value). In 
the case that holding out one dataset caused the maximum-likelihood estimate 
of the coefficient to be reversed, we denoted this as the effect no longer being 
present, which characterized the association as an indication. Two dataset 
holdouts led to indications in our analysis: the largest declined donor transplant 
dataset (‘regev-rajagopal’; Supplementary Table 2; most cells and most samples; 
indication in ACE2 multiciliated lineage age and sex associations, and CTSL 
AT1 sex association) and a declined donor tracheal epithelium dataset (‘seibold’; 
Supplementary Table 2; most donors in the smoking analysis; CTSL basal smoking 
association).

At least four values for each covariate are required to describe a single 
association in model 2 (for example, male nonsmoker, female nonsmoker, male 
smoker and female smoker for the kage effect). To summarize these effects and 
present a single association per covariate, we also fit the simplified model:

Yij  ageþ sexþ smokingþ dataset ð3Þ

As in model 2, the logarithmized, scaled total counts per cell were used as 
an offset, data were filtered as described, and multiple-testing correction was 
performed via Benjamini–Hochberg. To increase the robustness of our  
reported associations, we again performed pseudo-bulk and holdout analysis. 
Additionally, to still account for covariate interactions, we discarded associations 
where the complex model 2 and the simplified model 3 results were inconsistent. 
Here, consistency was defined by two criteria: at least one model 2 indication 
or robust trend in the same direction as the model 3 effect, and no model 2 
indication or robust trend in the opposite direction to the model 3 effect.

As metadata on smoking status were only available for a subset of the data, we 
also fitted a reduced version of models 2 and 3 without the smoking covariate on a 
larger dataset to confirm sex and age associations (Supplementary Data 5–8). The 
nonsmoking model was fit on 1,096,604 cells in 309 samples from 185 donors of 
adult lung data. Again, log total count (scaled) was used as an offset, pseudo-bulk 
and holdout analysis was performed, and associations from the simple model were 
tested for consistency with the complex model.

Normalizing ACE2+TMPRSS2+ double-positive fractions of human lung 
samples. Proportions of ACE2+TMPRSS2+ cells (Extended Data Fig. 3a and 
Supplementary Fig. 15) were normalized to account for differences in total UMI 
counts. Normalization was completed per donor, for each cell type by calculating 
Xi;j

Ni;j
´ 10; 000

I

, where Xi,j is the double-positive fraction of cell type i in donor j, 
and Ni,j represents the median total UMI count of cells of type i in donor j.

Identification of gene programs using feature importance for a random forest 
trained to classify ACE2+TMPRSS2+ versus ACE2−TMPRSS2− cells. To infer 
tissue programs, we trained a random forest classifier to discriminate between 
double-positive and double-negative cells (excluding ACE2 and TMPRSS2; a 75:25 
class-balanced test:train split), generalizing across multiple cell types in one tissue, 
and ranked genes according to their importance scores in the classifier. To infer cell 
programs, we performed differential expression analysis between double-positive 
and double-negative cells within each cell subset.

Importantly, these methods do not assume that ACE2+TMPRSS2+ cells 
form a distinct subset within each cell type. Rather, our goal is to leverage the 
variation among single cells within a single type to identify gene programs that are 
co-regulated with ACE2 and TMPRSS2 within each expressing cell subset.

For each of the lung, nasal and gut datasets, we labeled the cells with non-zero 
counts for both ACE2 and TMPRSS2 as double-positive cells, and the cells with 
zero counts for both ACE2 and TMPRSS2 as double-negative cells. Within  
each tissue, we identified cell types with greater than ten double-positive 
cells, and for each of these cell types, we selected the genes with increased 
expression (log fold change > 0) in double-positive cells compared to 
double-negative cells (to focus on important ‘positive’ features). We trained a 
classifier with a 75:25 train:test split to classify the double-positive cells from 
double-negative cells within each of these cell types using the ‘sklearn’ (v0.21.3)78 
‘RandomForestClassifier’ function with the following parameters: ‘n_estimators’ 
set to 100, the ‘criterion as gini’, and the ‘class_weight’ parameter set to ‘balanced_
subsample’. We first trained individual classifiers separately for each of the 
cell types and pooled genes with positive feature importance values (using the 
‘feature_importance’79 field in the trained RandomForestClassifier object) to train 
a final double-positive cell versus double-negative classifier across each tissue. We 
used the top 500 genes, as ranked by their feature importance scores, to define 
the signature for the gene expression program of double-positive cells for the 
tissue. This procedure was carried out in lung, nasal and gut datasets, yielding 
tissue-specific signatures for gene expression programs of double-positive cells 
from each tissue.

For visualization purposes only, we generated network diagrams using the 
‘networkx’ (v2.2) tool with the ForceAtlas2 graph layout algorithm80. We scored 
genes that appeared in signatures for multiple tissues by their aggregated feature 
importance (using a plotting heuristic method that used the sum of importance 
ranks for genes in individual tissues and by assigning a large valued rank (10,000) 
to a gene that did not appear in a particular tissue) and selected the top ten 
genes that were shared by each pair of tissues or shared by all tissues along with 
additional genes that included the ones unique to each tissue’s signature to plot in 
the network visualization. The GO terms enriched in the gene expression programs 
shared by double-positive cells across tissues were found using g:Profiler (v1.0.0)81 
using the ‘scanpy.queries.enrich’ tool.

This analysis was performed in two ways: on the original data, as well as 
after accounting for differences in distribution of the nUMI per cell between 
double-positive cells and double-negative cells. This was performed by binning 
the nUMI distribution in the double-positive cells for each tissue into 100 bins 
and then randomly sampling from the nUMI distribution for the double-negative 
cells in each bin to match the distribution of the double-positive cells in that bin. 
The nUMI distributions before and after the matching procedure are shown in 
Supplementary Fig. 11b.

Identification of gene programs enriched in double-negative cells versus 
double-negative cells using regression. In parallel, we used a regression 
framework to recover gene modules enriched in double-positive versus 
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double-negative cells (Fig. 4c,d and Supplementary Fig. 12a,b) in the nasal, lung 
and gut datasets. We first restricted our analysis to cell subsets derived from at 
least two donor individuals that each contained a mixture of double-negative and 
double-positive cells (nawijn nasal: multiciliated; goblet; regev/rajagopal lung: AT1, 
AT2, basal, multiciliated, and secretory; aggregated lung: AT2, multiciliated and 
secretory; regev/xavier colon: BEST4+ enterocytes, cycling TA (transit amplifying), 
enterocytes, immature enterocytes 2 and TA-2). For each of these cell subsets, we 
then used MAST (v1.8.2)82 to fit the following regression model to every gene with 
cells as observations:

Yi  X þ 1jSð Þ;

where Yi is the expression level of gene i in cells, measured in units of 
log2(transcripts per 10,000 reads (TP10K) + 1), X is the binary coexpression state of 
each cell (that is, double-positive versus double-negative cells), and S is the donor 
that each cell was isolated from. To control for donor-specific effects (that is, batch 
effects), we used a mixed model with a random intercept that varies for each donor. 
To fit this model, we subsampled cells from double-positive and double-negative 
groups to ensure that both the donor distribution and the cell complexity (that 
is, the number of genes per cell) were evenly matched between the two groups, 
as follows. First, for each subset, we restricted our analysis to donors containing 
at least two double-negative and two double-positive cells. Using these samples, 
we partitioned the cells into ten equally sized bins based on cell complexity and 
subsampled double-negative cells from each bin to match the cell complexity 
distribution of the double-positive cells. Finally, we fit the mixed model (above), 
controlling for both donor and cell complexity.

To build gene modules for double-positive cells, we prioritized genes by 
requiring that they be expressed in at least 10% of double-positive cells, and to 
have a model coefficient greater than 0 with an FDR-adjusted P value of less than 
0.05 (for the combined coefficient in the hurdle model). After this filtering step, 
genes were ranked by their model coefficient (that is, estimated effect size). The 
top 12 genes were selected for network visualization within each cell type (Fig. 4c,d 
and Supplementary Fig. 12a,b). In three cases (gut cycling TA, TA-2 and BEST4+ 
cells), RP11 antisense genes were flagged and excluded from visualizations. To 
visualize overlap across each network, we indicated whether each gene was among 
the top 250 genes from each of the other cell types. Putative drug targets were 
identified by querying the DrugBank database49. Gene-set enrichment analysis 
was performed using the R package Enrichr (v1.0)83, selecting the top 25 genes 
from each cell type for the pan-tissue analysis (‘all’ category; Fig. 4e) and the top 
50 genes from each cell type for the tissue-specific analyses (‘nose’ and ‘lung’ 
categories; Fig. 4e). We note a few limitations that may influence our results, 
including nonuniform sampling across donors, variation in cell compositions 
across regions (for example, distal lung versus carina) and additional cellular 
heterogeneity that the current level of broad subset annotation may not have 
captured.

Cell–cell interaction analysis. CellphoneDB54 (v.2.0.0) was run with default 
parameters on the ten human lung samples of the regev/rajagopal dataset (41 
samples from 10 patients, 2–6 locations each), analyzing the cells from each 
dissected region separately. For each sample (patient/location combination) and for 
each cell type, we distinguished double-positive cells (ACE2 > 0 and TMPRSS2 > 0) 
from all others. Only interactions highlighted as significant (that is, present in the 
‘significant means’ output P < 0.05) from CellphoneDB were considered. AT2 cells 
and myeloid cells were present in lung lobe samples from all ten patients, whereas 
samples from five patients contained both ACE2+TMPRSS2+ double-positive AT2 
cells and myeloid cells.

Coexpression patterns of additional proteases and IL6/IL6R/IL6ST. 
ACE2–protease coexpression (Fig. 2 and Extended Data Fig. 5) and ACE2–
IL6/IL6R/IL6ST coexpression (Supplementary Fig. 13) were tested via the logistic 
mixed-effects model described above (model 1).

Mouse smoke exposure experiments. For these experiments, 8- to 10-week-old 
pathogen-free female wild-type C57BL/6 mice were obtained from Charles River 
and housed in rooms maintained at constant temperature and humidity with a 
12-h light cycle. Animals were allowed food and water ad libitum. All animal 
experiments were approved by the ethics committee for animal welfare of the local 
government for the administrative region of Upper Bavaria (Regierungspräsidium 
Oberbayern) and were conducted under strict governmental and international 
guidelines in accordance with EU Directive 2010/63/EU. The female C57BL/6 mice 
(n = 5) were whole-body exposed to 100% mainstream cigarette smoke at a particle 
concentration of 500 mg/m3, generated from 3R4F research cigarettes (filter 
removed; Tobacco Research Institute, University of Kentucky), for 50 min twice 
daily, 5 d per week for 2 months to mimic human smoking habits84. Control mice 
(n = 3) were exposed to filtered air, but exposed to the same stress as mice exposed 
to cigarette smoke.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
Availability of published datasets is summarized in Supplementary Tables 1 and 
2. Interactive visualization and download of select (as indicated in Supplementary 
Tables 1 and 2) human gene expression data can be accessed on the Single Cell 
Portal at http://broad.io/hcacovid19. The scATAC-Seq data is available on Terra 
and github (see below) and the scTHS-Seq data is available on GEO (GSE154027). 
Mouse placenta data can be accessed on the Single Cell Portal at https://singlecell.
broadinstitute.org/single_cell/study/SCP1292.

Code availability
Data and an interactive analysis examining the coexpression of genes across 
datasets can be accessed via the open-source data platform Terra at https://
app.terra.bio/#workspaces/kco-incubator/COVID-19_cross_tissue_analysis/. 
All analysis scripts can further be accessed at https://github.com/theislab/
Covid_meta_analysis/.
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Extended Data Fig. 1 | A cross-tissue survey of ACe2+tMPRSS2+ cells in published single-cell datasets. a, Odds ratio (x axis) of ACE2+TMPRSS2+ 
coexpression in single-cell datasets (dots) from different tissues (y axis). b, Significance (-log10(p-value) using two-sided Fisher’s exact test, x axis) of 
coexpression of ACE2+TMPRSS2+ in single-cell datasets (dots) from different tissues (y axis). c,d, Proportion (x axis) of ACE2+ cells per dataset (c) and 
TMPRSS2+ cells per dataset (d) across different tissues (y axis).
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Extended Data Fig. 2 | A cross-tissue survey of ACe2+CtSL+ cells in published single-cell datasets. a, Proportion (x axis) of ACE2+CTSL+ cells per dataset 
(dots) across different tissues (y axis). b, Proportion (x axis) of ACE2+CTSL+ cells within clusters annotated by broad cell-type categories (dots) in each 
of the top 7 enriched datasets (y axis; color legend, inset). c, Odds ratio (x axis) of ACE2+CTSL+ coexpression in single-cell datasets (dots) from different 
tissues (y axis). d, Significance (-log10(p-value) using two-sided Fisher’s exact test, x axis) of coexpression of ACE2 and CTSL in single-cell datasets (dots) 
from different tissues (y axis). e, Proportion (x axis) of CTSL+ cells per dataset across different tissues (y axis).
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Extended Data Fig. 3 | Cellular composition and fraction of ACe2+tMPRSS2+ cells across the aggregated lung dataset. a, Boxplot of normalized donor 
fractions of ACE2+TMPRSS2+ (double positive - DP) cells per cell type. The box indicates the median and first and third quartile, whiskers extend to points 
within 1.5 times the interquartile range. For each cell type, only donors that have at least 100 cells of the cell type were included. cell types with at least 10 
ACE2+TMPRSS2+ cells in the entire dataset were labeled, the remaining cell types were grouped under ‘Other’. cell type labels preceded by a ‘2’ consist of 
cells that had no annotation available at level 3 and therefore kept their level 2 annotation. cells with only level 1 annotations were grouped under ‘Other’. 
(2_Airway epithelium: n=6, 2_Olfactory epithelium: n=3, 2_fetal airway progenitors: n=5, AT1: n=60, AT2: n=92, Basal: n=56, Multiciliated lineage: 
n=88, Secretory: n=79, Submucosal Secretory: n=35, Other: n=180 donors.). b, Percentage of ACE2+TMPRSS2+ cells across 377 samples and with sample 
composition. Top: Percentage ACE2+TMPRSS2+ cells in each sample, categorized by level 3 annotations. Bottom: Sample compositions. Samples are 
ordered by age, with 31-week pre-term births and 39-week full-term births both set to age 0. c, Zoom in on fetal and pediatric samples of plot (b). Samples 
are ordered and labeled by age. Fetal samples are partitioned into first and second trimester (TM) and pediatric samples are divided into 31-week pre-term 
births, 39-week full term births, 3 month, 3 year, and 10 year old children. AT1, 2: alveolar type 1, 2. AT2 progenitor cells were grouped under AT2.
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Extended Data Fig. 4 | Chromatin accessibility at the ACe2, tMPRSS and CtSL loci across lung cells in early life. a, Schematic: single-cell chromatin 
accessibility by transposome hypersensitive sites sequencing (ThS-Seq) from human pediatric samples (full gestation, no known lung disease) collected 
at day 1 of life, 14 months, 3 years, and 9 years (n=1 at each time point). b, Accessibility (dot color log normalized gene activity scores), and % of cells with 
accessible loci (dot size) for the ACE2, TMPRSS, and CTSL loci (columns) across different cell types (rows) in scThS-Seq with all time points aggregated. 
c, Accessibility (dot color log normalized gene activity scores), and % of cells with accessible loci (dot size) of ACE2, TMPRSS and CTSL in AT1–AT2 cells in 
scThS-Seq at day 1 of life, 14 months, 3 years, and 9 years (rows). d, Number of ACE2+CTSL+ and ACE2+TMPRSS2+ cells per time point.
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Extended Data Fig. 5 | ACe2 expression across tissues and cell types. Shown are fractions of ACE2 expressing cells (dot size) and mean ACE2 expression 
level in expressing cells (dot color) across datasets (rows) and cell types (columns).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Additional analyses to identify other proteases that may have a role in infection. a, Multiple proteases are coexpressed with ACE2 
in another human lung scrNA-seq (‘aggregated lung’). Scatter plot of significance (y axis, -log10(adjusted p value) by two-sided Wald test. (Methods)) 
and effect size (x axis) of coexpression of each protease gene (dot) with ACE2 within each indicated epithelial cell type (color). Dashed line: significance 
threshold. TMPRSS2 and PcSKs that significantly coexpressed with ACE2 are marked. b, ACE2-protease coexpression with PcSKs, TMPRSS2 and CTSL 
across lung cell types (‘aggregated lung’). Significance (dot size, -log10(adjusted p value) by two-sided Wald test. (Methods)) and effect size (color) for 
coexpression of ACE2 with selected proteases (columns) across cell types (rows). c-d, Predicted cleavage sites in the SArS-coV-2 S-protein S1/S2 region. 
(c) Multiple amino acid sequence alignment of SArS-coV-2 S-protein S1/S2 region with orthologous sequences from other betacoronaviruses (top) and 
polybasic cleavage sites of other human pathogenic viruses (bottom). d, Sequence logo plot showing cleavage site preference derived from MErOPS 
database for PcSK1, PcSK2, FUrIN, PcSK4, PcSK5, PcSK6 and PcSK7. e, Protease cleavage sites (triangles) predicted by ProP and PrOSPErous in the 
SArS-coV-2 spike protein. Top: Full-length SArS-coV-2 S-protein sequence schematic with predicted functional protein domains and motifs. Numbers: 
amino acid residues after which cleavage occurs; SP: signal peptide; NTD: N-terminal domain; rBD: receptor-binding domain; FP: Fusion peptide; FP1/2: 
Fusion peptide 1/2; hr1: heptad repeat 1; ch: connecting helix; hr2: heptad repeat 2; TM: Transmembrane domain. f,g, Multiple proteases are expressed 
across lung cell types (‘aggregated lung’). f, Distribution of non-zero expression (y axis) for ACE2, PcSKs and TMPRSS2 across lung cell types (x axis). 
White dot: median non-zero expression. g, Proportion of cells (y axis) expressing ACE2, PCSK family or TMPRSS2 across lung cell types (x axis), ordered 
by compartment. h, ACE2+PCSK+ double positive cells across lung cell types. Fraction (y axis) of different ACE2+PCSK+ or ACE2+TMPRSS2+ double positive 
cells across lung cell types, ordered by compartment (x axis). Dots: different samples, line: median of non-zero fractions. i,j, ACE2+PCSK+ coexpression 
across human tissues (collection of published scrNA seq datasets). i, Percent (y axis) of different ACE2+PCSK+ or ACE2+TMPRSS2+ double positive cells 
across human tissues (x axis). Dots: different single-cell datasets, line: median of non-zero fractions. j, ACE2 coexpression with PcSKs or TMPRSS2 across 
human tissues. Significance (dot size, -log10(adjusted p value) by two-sided Wald test. (Methods)) and effect size (dot color) of coexpression. k, Fraction 
of ACE2+TMPRSS2+PCSK+ cells across lung cell types (‘regev/rajagopal dataset’). Dots: samples, line: median of non-zero fractions.
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Extended Data Fig. 7 | ACe2, tMPRSS2, CtSL immunofluorescence and RNA profiling. a, Negative control of PLISh in human lung alveoli. Left shows 
scrambled probe detection in three indicated colors. right shows hTII-280 antibody staining (red) with 2 color scramble probe detection. DAPI (blue) 
indicates nuclei. b, Frequency of ACE2, CTLS and TMPRSS2 triple positive cells in each sample (n = 60) (dots) in the regev/rajagopal dataset. c, PLISh 
and immunostaining in human adult lung alveoli for ACE2 (red), PrO-SFTPc (green), DAPI (blue). d, Immunostaining in human adult lung alveoli. hTII-
280 (green), TMPrSS2 (red) and AGEr (white). Blue shows DAPI in nuclei. e, Mean expression (y axis, FPKM, from bulk rNA-seq, error bars: standard 
errors) of ACE2, CTSL, TMPRSS2 in sorted cells from 3 different human explant donors using the following markers: large and small airway basal cells 
(NGFr+), AT2 cells (hT-II 280+) and alveolar organoids (hT-II 280+). f, Expression in the submucosal gland. Mean expression (color) and proportion of 
expressing cells (dot size) of ACE2, TMPRSS2 and CTSL in key cell types (rows), from scrNA-seq of human large airway submucosal glands. g, PLISh and 
immunostaining in human large airway submucosal glands. ACE2 (red), ACTA2 (green) and DAPI (blue). We imaged one representative area for a single 
patient for a,c,d,g (Methods).
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Extended Data Fig. 8 | Consensus ontology for lung dataset meta-analysis. An overview of the three-level lung cell ontology used for cell annotation 
harmonization. For consistent analysis across datasets we mapped annotations to this ontology. PNEc: pulmonary neuroendocrine cells. AT1, 2: alveolar 
type 1, 2. Ec: endothelial cells.
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Extended Data Fig. 9 | Age, sex, and smoking status associations with expression of ACe2, tMPRSS2, and CtSL across level 3 cell type annotations 
modeled without interaction terms. a, Age, sex, and smoking assocations with expression of ACE2 (blue), TMPRSS2 (yellow), and CTSL (green) modeled 
without interaction terms on 985,420 cells from 164 donors. Level 3 cell types are shown on the y-axes, and are subdivided by level 1 cell type annotations 
(top to bottom: epithelial, endothelial, stromal and immune cells). The effect size (x axis) is given as a log fold change (sex, smoking status) or the slope 
of log expression per year (age). Positive effect sizes indicate increases with age, in males, and in smokers. As the age effect size is given per year, it is 
not directly comparable to the sex and smoking status effect sizes. colored bars: associations with an FDr-corrected p-value<0.05 (one-sided Wald 
test on regression model coefficients), consistent effect direction in pseudo-bulk analysis, and consistent results using the model with interaction terms 
(Methods). White bars: associations that do not pass all of the three above-mentioned evaluation criteria. Error bars: standard errors around coefficient 
estimates. Error bars are only shown for colored bars (indications or robust trends) to limit figure size. Only cell types with at least 1000 cells across 
donors are included. Number of cells and donors per cell type: Basal: 155877, 105, Multiciliated lineage: 37530, 157, Secretory: 22306, 140, rare: 2676, 71, 
Submucosal secretory: 33661, 45, AT1: 29973, 101, AT2: 155512, 104, Arterial: 3497, 37, capillary: 15745, 34, Venous: 7173, 33, Lymphatic Ec: 5055, 76, 
Fibroblasts: 9112, 51, Airway smooth muscle: 1077, 13, B cell lineage: 11761, 90, T cell lineage: 52139, 97, Innate lymphoid cells: 29836, 56, Dendritic cells: 
9017, 90, Macrophages: 156964, 89, Monocytes: 42703, 96, Mast cells: 13581 cells, 88 donors. b, robustness of associations to holding out a dataset. The 
values show the number of held-out datasets that result in loss of association between a given covariate (rows) and ACE2, TMPRSS2, or CTSL expression 
in a given cell type (columns). robust trends are determined by significant effects that are robust to holding out any dataset (0 values). From left to right: 
results for ACE2, TMPRSS2, and CTSL. AT1, 2: alveolar type 1, 2. Ec: endothelial cell.
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Extended Data Fig. 10 | ACe2 and tMPRSS2 are up-regulated in bronchial brushings from current versus former smokers. Boxplots of log counts per 
million normalized gene expression for ACE2 and TMPRSS2 are plotted across current (red, n=70 samples) versus former (green, n=60 samples) smokers. 
Both genes are significantly up-regulated in current versus former/never (ACE2, FDr=0.006; and TMPRSS2, FDr=0.00004) based on a linear model using 
voom-transformed data that included genomic smoking status, batch, and rNA quality (TIN) as covariates and patient as a random effect. Multiple testing 
correction was performed via Benjamini-hochberg to obtain an FDr-corrected p-value. (Methods).
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