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Abstract 

Single cell RNA sequencing (scRNA-seq) enables characterizing the cellular heterogeneity in human 

tissues. Technological advances have enabled the first population-scale scRNA-seq studies in 

hundreds of individuals, allowing to assay genetic effects with single-cell resolution. However, existing 

strategies to perform genetic analyses using scRNA-seq remain based on principles established for 

bulk RNA-seq. In particular, current methods depend on a priori definitions of discrete cell types, and 

hence cannot assess allelic effects across subtle cell types and cell states. To address this, we propose 

Cell Regulatory Map (CellRegMap), a statistical framework to test for and quantify genetic effects on 

gene expression in individual cells. CellRegMap provides a principled approach to identify and 

characterize heterogeneity in allelic effects across cellular contexts of different granularity, including cell 

subtypes and continuous cell transitions. We validate CellRegMap using simulated data and apply it to 

two recent studies of differentiating iPSCs, where we uncover a previously underappreciated 

heterogeneity of genetic effects across cellular contexts. Finally, we identify fine-grained genetic 

regulation in neuronal subtypes for eQTL that are colocalized with human disease variants.  
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Introduction 

Seminal population-scale single-cell RNA sequencing (scRNA-seq) studies have 

demonstrated the feasibility to map expression quantitative trait loci (eQTL) using scRNA-seq 

as a readout. These studies have successfully replicated eQTL that had previously been 

discovered using bulk RNA-seq profiles1,2, and more importantly, demonstrated increased 

resolution by mapping eQTL across individual cell types that are captured by scRNA-seq2–4. 

Despite the scope of these novel opportunities posed by using scRNA-seq for genetic 

mapping, existing strategies to analyse the resulting data remain largely based on principles 

that were originally devised for bulk RNA-seq profiling. For example, while established multi-

tissue eQTL methods (e.g., refs. 5–13) remain in principle applicable to identify eQTL specific 

to individual cell types, these methods require discretization of the single-cell profiles into 

distinct cell clusters a priori to quantify gene expression. Consequently, these approaches do 

not fully leverage the resolution provided by single-cell data, potentially failing to detect 

changes in allelic regulation across subtle cell subtypes. Discretization of single transcriptome 

profiles into discrete cell clusters can also be limiting in settings where cell states change in a 

continuous manner, as for example observed across developmental time course or cellular 

differentiation. Additionally, even seemingly discrete cell types may share common axes of 

heterogeneity, e.g. due to cell-intrinsic factors such as the cell cycle, thus motivating to jointly 

analyse genetic effects across multiple cell states in order to capture all of these dimensions. 

Here, we propose Cellular Regulatory Map (CellRegMap), a framework for mapping regulatory 

variants in an unbiased manner across cell types and cell states as obtained from the scRNA-

seq profiles. CellRegMap does not require any discretization of cells into cell types, nor is it 

required to annotate or define specific cell states a priori. Instead, the model leverages a multi-

dimensional cell state manifold estimated from single-cell transcriptome profiles to define 

cellular contexts in a continuous and unbiased manner. CellRegMap then allows to test for 

and characterize interaction effects between genetic variants and cellular context on gene 

expression traits (Fig. 1). We validate CellRegMap using simulated data, and apply the model 

to two recent single-cell genetics studies1,3, where we demonstrate increased power to detect 

interactions, and identify regulatory modules of eQTL that are active in the same cellular 

contexts. Finally, we demonstrate the relevance of cell-context interactions to fine-map 

colocalization events with human disease variants.  
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Figure 1. CellRegMap overview and concept. (a, b) Established workflows based on principal 

component analysis or factor analysis applied to scRNA-seq can be used to both estimate cellular 

manifolds (a) and to uncover individual factors that capture different cellular contexts (b). In addition to 

capturing major cell types, these factors can also explain subtle subtypes, as well as cell-type 

independent variation, such as the cell cycle and other cell-intrinsic factors. These cellular contexts can 

represent both discrete or continuous cell state transitions, including cellular differentiation. (c) Example 

of a genotype-context (GxC) interaction across a cellular differentiation context. Left: Established 

analysis strategies that require discretization into discrete cell clusters (low, mid, high), whereas 

CellRegMap enables assaying allelic effects as a function of the continuous differentiation context 

(right). Top panel: cellular manifold with colour denoting allelic effects, either estimated in discrete cell 

populations (left) or in continuous fashion using CellRegMap (right). Middle panel: Alternative 

representation of allelic effects for different genotype groups, again considering a discrete (left) or 

continuous approach (right). Bottom panel: Encoding of discrete cell types (left) and continuous 

gradients using a cellular context covariance matrix in CellRegMap. (d) The CellRegMap model can be 

cast as linear mixed model, where single-cell gene expression values of a given gene are modelled as 

a function of a persistent genetic effect, GxC genotype-context interactions, additive effects of cellular 

context, relatedness and residual noise. GxC interactions are modelled by treating allelic effect size 

estimates in individual cells (𝛽
𝐺𝑥𝐶

) as random variable with prior covariance 𝛴 (c). (e) CellRegMap 

allows to test for heterogeneous genetic effects across cells due to GxC at a given locus for a given 

gene (testing 𝛽
𝐺𝑥𝐶

= 0 vs 𝛽
𝐺𝑥𝐶

≠ 0).  

Results 

CellRegMap generalizes the classical linear interaction model for genotype-environment 
interactions2,14 and allows to test for interactions between genotype and both discrete and 
continuous cellular context. Briefly, CellRegMap take a cellular context covariance estimated 
from scRNA-seq as input. This covariance can be derived using existing workflows, including 
factor analysis (e.g., multi-omics factor analysis, MOFA15) or principal component analysis 
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(PCA; Fig. 1a,b). CellRegMap incorporates the estimated cellular context covariance to 
account for interaction effects within the linear mixed model (LMM) framework16–19 (Fig. 1c,d). 
Briefly, in addition to a conventional persistent genetic effect, CellRegMap accounts for GxC 
interactions by modelling heterogeneous genetic effects in individual cells as random effects 
(Methods, Fig. 1d). CellRegMap builds on and extends StructLMM, an LMM-based method 
to assess genotype-environment interactions in population cohorts20. In particular, 
CellRegMap includes an additional random effect component to account for relatedness 
between samples, thereby accounting for the repeat structure in single-cell analyses. This is 
required because typically multiple cells are sampled from the same individuals (Methods).  

More formally, CellRegMap models the single-cell expression profile of a given gene (across 
a total of N cells from multiple individuals; 𝑦) as a sum of a conventional -persistent- genetic 
effect (G), interactions with cellular context (GxC), additive contributions from cell context (C), 
a relatedness component (rel.) and residual noise (Fig. 1d). GxC interactions are modelled as 
an element-wise product between the expanded genotype vector g at a given locus and a 

GxC effect size vector 𝛽𝑮𝒙𝑪 = [𝜷𝑮𝒙𝑪𝟏 , . . . , 𝜷𝑮𝒙𝑪𝑵]
𝑻, which correspond to allelic effect sizes in 

individual cells. This vector follows a multivariate normal distribution, 𝛽𝐺𝑥𝐶 ∼ 𝑁(0, 𝜎𝐺𝑥𝐶
2𝛴). 

Depending on the parametrization of the cell-context covariance 𝛴, CellRegMap can be setup 
to account for interactions with different cellular contexts, including discrete and related cell 
types, as well as continuous cell state transitions (Fig. 1c,d, Methods). The same covariance 
is also used to account for additive effects of cellular context on expression, i.e.,𝒄 ∼
𝑵(𝟎, 𝝈𝑪

𝟐𝜮). To account for the repeat structure caused by sampling multiple cells from the 
same individual, CellRegMap includes an additional relatedness component, which is 
parametrized as a product covariance between a conventional kinship covariance 𝑲 and the 

cell context covariance, i.e.,  𝒖 ∼ 𝑵(𝟎, 𝝈𝑲𝑪
𝟐𝑲 ∗ 𝜮) (see Methods). This component ensures 

that the model retains calibration when sampling multiple cells from the same individual. 
Finally, the model assumed Gaussian distributed and independently and identically distributed 

residual noise, i.e. 𝜀 ∼ 𝑵(𝟎, 𝝈𝒏
𝟐𝑰) (Fig. 1e). 

We propose a score test to identify gene-loci pairs with significant G×C effects (testing 𝛽𝑮𝒙𝑪 ≠

𝟎, Fig. 1f), which generalizes the approach in ref. 20. Additionally, CellRegMap can be used to 

characterize GxC effects of eQTL by estimating the allelic effect for individual cells 𝛽𝑮𝒙𝑪, which 

can be used to identify specific cell populations with increased or decreased genetic effects 

(Fig. 1c, Methods). The model is implemented in efficient open-source software, which 

leverages low-rank representations and factorizations of the resulting total covariance, after 

marginalizing the random effect components (Methods). As a result, the computational 

complexity of CellRegMap scales linearly in the number of cells (Supp. Fig. 1.1). 

Model validation using simulated data 

Initially, we considered simulated data to validate the calibration of CellRegMap and to assess 

statistical power of the model. We simulated single-cell expression profiles by sampling from 

the generative model of CellRegMap (Methods), using a cell context covariance 𝛴 derived 

from the leading 20 principal components of a real scRNA-seq dataset (from ref. 1; see below).  

We confirmed statistical calibration of CellRegMap, both when considering expression 

phenotypes generated from a null without simulated genetic effect (Supplementary Fig. 2.1), 

or when simulating from a persistent effect model without GxC interactions (Fig. 2a,b, 
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Supplementary Fig. 2.1; Methods). We also compared CellRegMap to a reduced model that 

does not include the relatedness component (which is similar to the existing StructLMM20 

model), thereby confirming that the relatedness component is required to retain calibrated p-

values when multiple cells are assayed from each individual (Fig. 2a,b, Supplementary Fig. 

2.1). 

Next, we conducted experiments to assess the statistical power of CellRegMap for identifying 

loci with simulated GxC effects. We simulated single-cell expression profiles with variable 

fractions of genetic variance explained by GxC (Fig. 2c; Methods). For comparison, we also 

considered a conventional linear interaction test (similar to the approach in ref. 14) that 

assesses a linear interaction with individual cellular contexts (SingleEnv-Int; adjusted for 

multiple testing across factors using Bonferroni; Methods), but using otherwise the same 

random effect components to account for additive effects of context and relatedness employed 

in CellRegMap (Methods). The power of both tests increased as the fraction of the genetic 

effect explained by GxC increases, noting that CellRegMap was substantially better powered 

than the SingleEnv-Int test (Fig. 2c, Supplementary Fig. 2.2). As a second parameter, we 

varied the number of cellular contexts that are simulated to contribute to G×C (out of 20 

included in both tests). The results of this analysis show that CellRegMap outperformed the 

corresponding SingleEnv-Int GxC test when larger numbers of cellular contexts contribute to 

GxC (Fig. 2d, Supplementary Fig. 2.2). We also varied the number of cellular contexts tested 

in the model, when all 20 contribute to GxC (Fig. 2e, Supplementary Fig. 2.2). Finally, we 

repeated the simulations using a negative binomial model to simulate observation noise, as 

expected in real scRNA-seq data, and we assessed the effect of sampling variable numbers 

of cells per individual, consistently observing calibrated test statistics and power benefits of 

CellRegMap (Supplementary Fig. 2.1, 2.2; Methods). Taken together, these results 

demonstrate power advantages and robustness of CellRegMap, compared to existing 

methods, particularly when multiple cellular contexts contribute to GxC. 

 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted September 2, 2021. ; https://doi.org/10.1101/2021.09.01.458524doi: bioRxiv preprint 

https://paperpile.com/c/sKqRDt/4peN
https://paperpile.com/c/sKqRDt/8r9x
https://www.nature.com/articles/s41588-018-0271-0#Fig2
https://www.nature.com/articles/s41588-018-0271-0#Fig2
https://doi.org/10.1101/2021.09.01.458524


6 

 

Figure 2. CellRegMap validation using simulated data. (a, b): Assessment of statistical calibration 

of the GxC interaction test based on 200 variant-gene pairs simulated from the null (persistent genetic 

effect, no GxC interaction; Methods), either simulating a single cell per individual (a) or simulating 

multiple cells for each individual (50 cells per individual; b). Shown are QQ plots of expected versus 

observed negative log p-values for StructLMM and CellRegMap. Whereas both StructLMM and 

CellRegMap are calibrated if a single cell is sampled per individual, the relevant setting of multiple cells 

per individual requires the additional relatedness component in CellRegMap to retain calibrated results. 

(c-e): Assessment of power to detect simulated GxC effects. Shown are results from CellRegMap and 

a single-environment interaction test (SingleEnv-Int) with the same relatedness component as used in 

CellRegMap (Bonferroni-adjusted for the number of cell contexts; Methods). (c) Power as a function of 

the fraction of genetic variance explained by GxC. (d) Power as a function of the number of active 

contexts (contexts with nonzero GxC contribution), when testing 20 cellular contexts. (e) Power as a 

function of the number of tested contexts (out of 20 all contributing to GxC). Results presented are 

based on 250 stimulated genes, with bars hight corresponding to average power and error bars to 

standard deviations estimated across 10 repeat experiments. Stars denote the default value of that 

parameter when other parameters are being varied. 

Application to a continuous trajectory of iPS cells differentiating 

towards definitive endoderm 

Next, we applied our model to a recent single-cell RNA-seq dataset of differentiating induced 

pluripotent stem cells (iPSCs) that spans 125 genetically diverse individuals1. Briefly, a total 

of ~30,000 cells were captured at four time points of iPSC differentiation (day0: iPSCs, day1, 

day2 and day3 of differentiation towards definitive endoderm; Fig. 3b), using the SMART-

Seq221 protocol. As expected, cell differentiation is the dominant cellular context in this study, 

and hence this dataset is an ideal test case to assess the ability of CellRegMap to identify 

continuous changes of allelic effects across a cellular trajectory.  
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We used MOFA15 to infer latent factors that explain variation in cellular contexts in the data, 

which captured both differences in major cell types across the differentiation trajectory, but 

also more subtle cell states. For example, the first factor (MOFA 1) primarily explained the 

differentiation axis, with cells transitioning between a pluripotent state and the definitive 

endoderm fate. Higher order factors captured other cellular contexts, including cell cycle phase 

(MOFA 3 and 6), respiration (MOFA 4) and others (Supplementary Fig. 3.1; Methods).  

We applied CellRegMap to test for GxC effects at 4,470 eQTL variant / gene pairs that were 

previously identified in the primary analysis of the dataset using a conventional eQTL mapping 

workflow that does not account for GxC interactions1. We compared CellRegMap when only 

using the first MOFA factor to define the cell context covariance, which is similar to the 

approach taken in the primary analysis1, to a model that leverages the information contained 

in the leading 10 MOFA factors. The model with 10 components yielded a substantially larger 

number GxC effects (322 versus 183, FDR<5%; Fig. 3a, Supplementary Table 1), indicating 

that despite cell differentiation being the major driver of expression variation, other more subtle 

cellular states also manifest in GxC interactions on gene expression.  

Next, we set out to characterize specific cellular contexts that are associated with the identified 

GxC interactions. We used CellRegMap to estimate the GxC allelic effect component in each 

cell, thereby recovering the continuous landscape of the GxC component of genetic effects 

across the cell-context manifold (Methods). This analysis identified a range of allelic patterns, 

including GxC effects that are primarily governed by cellular differentiation but also more 

complex patterns that involve multiple cellular contexts and higher-order cellular factors. For 

example, the eQTL variant rs113520162 for IER3 had a GxC effect that reflects variation 

across cell differentiation explained by the first MOFA component (Fig. 3b, middle). Other 

eQTL, such as rs11180470 for GLIPR1L1, had GxC effects that were associated with two 

MOFA factors (Fig. 3b, right). More generally, we observed that higher order MOFA 

components capture changes in cellular contexts beyond cellular differentiation, including the 

cell cycle (Fig. 3c), cellular respiration (Fig. 3d), and others (Supplementary Fig. 3.2). 

Collectively these results illustrate how CellRegMap can be used to uncover different cellular 

contexts that manifest in GxC interactions.  
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Figure 3. Application of CellRegMap to iPSCs differentiating towards definitive endoderm.  
(a) Comparison of the CellRegMap GxC interaction test, either considering the first MOFA factor to 
define the cell context covariance (MOFA 1, x axis) versus using the leading 10 cellular factors (MOFA 
1:10, y axis). Shown is a scatterplot of negative log p-values obtained from the respective tests applied 
to 4,470 eQTL variants and genes. Horizontal and vertical lines denote the FDR<5% significance 
threshold (Benjamin-Hochberg adjusted). Shown in each quadrant is the number of eQTL with evidence 
for a GxC effect (e.g., 239 GxC effects are exclusively detected by the model based on 10 factors; 
FDR<5%). (b-d) Representative examples of eQTL with GxC interaction. (b) Left: scatter plot of the first 
two MOFA factors (capturing cell differentiation as context) with colour denoting the time point of 
collection (day 0,1,2 & 3 of endoderm differentiation); middle: Identical scatter plot with colour encoding 
the estimated allelic effect for the eQTL variant rs113520162 for the gene IER3; right: allelic effect for 
the eQTL at rs11180470 for the gene GLIPR1L1. Shown are total allelic effects (𝛽

𝐺
+𝛽

𝐺𝑥𝐶
) for 

individual cells. The allelic effect size colour bar is cantered on the persistent genetic effect (𝛽
𝐺
). Panels 

on the top and right display marginal densities of cells that either have increased (high, red) or 
decreased (low, cyan) allelic effects (corresponding to the bottom and top 10% quantiles respectively). 
Whereas the GxC effect for the eQTL for IER3 is primarily explained by the first MOFA component, the 
GxC effect for GLIPR1L1 is captured by the combination of the first two MOFA factors. (c) Analogous 
presentation as in b, displaying a scatter plot between MOFA factors 3 and 6 with cells coloured by 
alternative annotations. Left: inferred cell cycle phase (Methods); Right: allelic effects for an eQTL at 
rs506770 for HSPA1A (yellow). (d) As in b,c scatter plot of MOFA factors 4 and 1. Left: cells coloured 
by cellular respiration (Methods); Right: allelic effects for the eQTL at rs11763367 for WBSCR27 
(green).  
 

 

Application to iPSC-derived dopaminergic neurons 

Next, we applied CellRegMap to a single-cell dataset of 215 iPS cell lines that were assayed 

at three stages of differentiation towards dopaminergic neurons3 (11, 30 and 52 days of 

differentiation) using the 10X Genomics technology (3’ kit22), as well as a stress condition at 
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the most differentiated time point. These data feature prominent discrete cell states rather than 

continuous changes, thus providing a complementary use case.  

To assess whether CellRegMap can identify GxC effects associated with finer grained 

neuronal subtypes, we considered 147,801 cells that were annotated as dopaminergic 

neurons in the primary analysis of this dataset (based on marker genes3). This selection 

included cells collected at three of the four time points and conditions: young neurons (at day 

30 of iPSC differentiation), mature neurons (day 52) and mature neurons followed by rotenone 

treatment (day 52 ROT). A t-SNE embedding of these cells identified discrete cell populations 

that reflect the combination of differentiation stage and stimulus (Fig. 4a). Our hypothesis is 

that while it is expected that regulatory variants can be specific to these major sub populations, 

there could also be GxC effects that are more granular due to cellular contexts that capture 

subpopulations within these clusters, or that capture shared cellular contexts that are present 

across these clusters. To mitigate the sparsity of 10X sequencing data compared to SMART-

Seq2, we aggregated the read count information into pseudocells (similar to approaches 

described in refs. 23,24; resulting in 17 cells on average, 8,648 pseudocells in total, 

Supplementary Fig. 4.1; Methods). We again considered the leading 10 MOFA components 

to define the cell context covariance for analysis using CellRegMap. 

We tested for GxC effects at 1,374 SNP-gene pairs identified as eQTL in at least one of the 

three discrete cell populations in the primary analysis of the data3 (FDR<5%; Methods). This 

identified 213 eQTL with evidence for GxC interactions (FDR<5%, Methods, Supplementary 

Table 2). We again used estimated allelic effects in single cells to interpolate the landscape 

of GxC effects for each of the eQTL with a significant GxC effect. To identify principal patterns 

of genetic regulation across cell contexts, we adapted a clustering approach originally 

designed for spatial transcriptomics data to group the identified allelic effect patterns across 

the cell context manifold (implemented in SpatialDE25, Supplementary Fig. 4.2a). This 

identified 17 clusters with distinct GxC effect profiles (Fig. 4b). In each of these clusters, we 

annotated the subpopulation of cells with the largest absolute GxC effects by identifying genes 

with covarying expression patterns. Briefly, for each cluster we ranked genes by the correlation 

between their single-cell expression profiles and the pattern of absolute GxC allelic effects. 

Based on this gene ranking we then assessed enrichments of known pathways (over-

representation analysis using a hypergeometric test and annotations from GO, Reactome, 

KEGG, HPO and others), as well as using literature curated marker genes of dopaminergic 

neurons (see Methods for details, Supplementary Fig. 4.2b).  

Some of the clusters primarily captured genetic effects that were specific to the three major 

cell populations. For example, cluster 8 captured eQTL that are primarily active in the day 30 

population, cluster 4 eQTL are primarily active in day 52 cells, and cluster 5 captures effects 

specific to the rotenone-treated day 52 cell population (Fig. 4c-e). Gene enrichment analysis 

of these clusters yielded processes that are consistent with the expected function of the 

corresponding cell populations, such as response to oxidative stress (GO: 006979) for cluster 

5 (Methods, Supplementary Fig. 4.2). 
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Figure 4. CellRegMap identifies fine-grained regulatory modules in dopaminergic neurons. (a) 
Overview of the cell subpopulations: tSNE plot of 8,648 pseudocells (Methods), highlighting three major 
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populations of dopaminergic neurons: young neurons (day 30 of iPSC differentiation), more mature 
neurons (day 52) and rotenone-treated day 52 dopaminergic neurons (day 52 ROT). (b-h) Results from 
clustering of allelic effect profiles of GxC interactions based on relative allelic effect size estimates. (b) 
Barplots indicating the number of eQTL with GxC effects assigned to each cluster. Highlighted are the 
six representative clusters that are displayed in subsequent panels. (c-h) For each of 6 representative 
clusters, from left to right: box plot of the distribution of the relative GxC effect sizes estimates for cells 
in each of the three major population, manifold of consensus relative GxC effect sizes estimates for 
each cluster a; example eQTLs with allelic effect size estimates across the cell manifold as in a with 
colour denoting total allelic effects (𝛽

𝐺
+𝛽

𝐺𝑥𝐶
); the colour bar is centred on the persistent genetic effect 

size estimate for each eQTL (𝛽
𝐺
). 

 

 

Beyond these expected patterns of GxC effects, other eQTL had interaction effects that were 

explained by clusters that show continuous changes of allelic effects across developmental 

time, or that are specific to more fine-grained sub populations (Fig. 4f-h). For example, cluster 

10 captured eQTL that are active in common subpopulation of day 52 treated and untreated 

cells (Fig. 4f). Functional enrichment analysis linked this cluster to processes related to 

exocytosis and neurotransmitter transport through synapsis, suggesting an association with 

neurons that are actively transmitting cell-cell information (Supplementary Fig. 4.2). Clusters 

2 and 9 exhibit GxC effects with opposing directions, with cluster 2 being associated with 

increased genetic effects and cluster 9 with decreased effects. Cluster 9 eQTL have increasing 

absolute effect sizes in more mature neurons, regardless of the stimulation status. Enrichment 

of this cluster highlights neuronal-specific features such as synaptic signalling (GO:0099536, 

Fig. 4g, Supplementary Fig. 4.2). Cluster 2, on the other hand, is specific to a subpopulation 

of day 30 cells (Fig. 4h) that corresponds to less mature dopaminergic neurons, as evident by 

continuous gradients of canonical dopaminergic neuronal markers (Supplementary Fig. 4.2, 

Methods).  

Finally, we considered a subset of 94 eQTL with evidence for statistical co-localization with 

neuronal phenotypes and human disease traits3 (Methods). Out of these, 14 eQTL had 

significant GxC interactions. For example, the eQTL variant rs1972183 for SLC35E2 has a 

GxC effect explained by cluster 4 and is colocalized with a GWAS variant for sleeplessness 

and insomnia in the subpopulation of day 52 untreated cells. CellRegMap allowed for fine-

mapping a specific sub-populations within this cluster with elevated allelic effect sizes 

(Supplementary Fig. 5.1a). We used allelic effect size estimates to mark cells in the top and 

bottom and bottom 30% quantiles ranked by the absolute GxC effects, and applied a classical 

cis eQTL mapping workflow based on expression estiamtes derived from scRNA-seq counts 

across cells in the respective quantiles26. This analysis confirmed the expected difference in 

effect sizes (Fig. 5e,f), but also highlighted subtle differences in the cis eQTL mapping profile 

for each of these traits (Fig. 5d). Notably, the trait associated with the top quantile of increased 

allelic effects also yielded higher evidence for co-localization with the disease GWAS signal 

(Supplementary Fig. 5.2). 
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Figure 5. CellRegMap allows to fine-map sub populations of cells linked to human disease 
variants. (a) Allelic effect size estimates for the rs1972183 on SLC35E2. Shown is a scatter plot of 

tSNE coordinates with color denoting estimated GxC allelic effects (𝛽
𝐺𝑥𝐶

). (b-f) SLC35E2-eQTL results 

obtained from a conventional eQTL mapping workflow (Methods), using the CellRegMap output to 
select alternative cell populations to estimate expression phenotypes. (b-c) tSNE plots as in a, with 
colour indicating alternative selected subpopulations of day 52 untreated cells. (b) Top and bottom 30% 
quantiles of cells ranked by the absolute GxC allelic effect. (c) Day 52 untreated cells. (d) Manhattan 
plots displaying negative log p-value from a conventional eQTL workflow when using the subpopulations 
as in b to estimate expression phenotypes. Shown are negative log p-vlaues (y-axis) as a function of 
the genomic position of common variants (x-axis). (e-f) Violone plots displaying effect size estimates on 
SLC35E2 (y-axis) stratified by genotype at the lead variant rs1972183 (x-axis), either considering all 
cells for pseudo bulk expression estimation (e) or (f) considering the subpopulations as in b, d. 
 
 

Discussion  

Here, we presented cellular regulatory map (CellRegMap), a linear mixed model for the 

identification of context-specific eQTL that is applicable to cellular states derived from scRNA-

seq. Critically, CellRegMap overcomes the need to define cellular contexts a priori (Fig. 1) 

and instead uses cell manifolds derived from single-cell transcriptome profiles to estimate 

cellular contexts in an unbiased manner to then test for interaction effects.  
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Conceptually, CellRegMap is related to and builds on StructLMM, a model that was originally 

designed to identify genotype-environment interactions in population cohorts20. CellRegMap 

adapts these principles to single-cell genomics, by including an additional relatedness 

component in the model that accounts for dependencies across cells that are assayed from 

the same individual. CellRegMap retains calibrated test statistics (Fig. 2a,b and 

Supplementary Fig. 2.1) and enjoys power benefits compared to conventional fixed-effect 

interaction tests (Fig. 2c-e and Supplementary Fig. 2.2). 

To illustrate the model, we applied CellRegMap to a single-cell dataset of iPS cells from 125 

individuals across differentiation towards a definitive endoderm fate1. The main source of 

variation in this dataset is a continuous differentiation signal, which manifests in dynamic eQTL 

across differentiation. Notably, we also identify eQTL associated with other dimensions of 

transcriptome variation, including factors associated with cell cycle phase or respiration (Fig. 

3). As a second-use case, we applied CellRegMap to scRNA-seq data from iPSCs 

differentiating toward dopaminergic neurons3. Our analysis demonstrated that cell-type 

specific eQTL are not only observed for major subpopulations linked to known cell types, but 

instead a substantial number is driven by other more subtle variations in cellular context (Fig. 

4). 

An important insight from both use cases is that continuous and subtle allelic regulation, which 

manifests in GxC in specific subpopulations, is common. Even in seemingly well-defined cell 

populations, CellRegMap identified heterogeneity in genetic effects that manifests in GxC 

interactions. These interactions are particularly relevant if they are linked to eQTL with 

evidence for colocalization with human disease variants. We illustrated this for one disease-

linked GxC effect, where CellRegMap allowed to fine-map the specific subpopulation of cells 

that is primarily responsible for this eQTL signal. Notably, this step does not only enhance the 

interpretation of most relevant cell populations, but can also yielded more fine-grained cis 

eQTL signals for mapping variants.  

Although we demonstrated that CellRegMap is broadly applicable to different datataset and 

scRNA-seq technologies, the model is not free of limitations. At present, CellRegMap is 

primarily designed as a tool to annotate known eQTL variants rather than facilitating variant 

dsicovery. This is analogous to the two-stage strategy for mapping of genotype-environment 

interactions at known GWAS loci in population cohorts. Such procedures build on the 

assumption that the persistent genetic effect signal is sufficiently strong to enable discovery. 

Future extensions of CellRegMap could consider the benefits of accounting for GxC for the 

purpose of variant discovery itself. A second limitation of the model is that it currently requires 

appropriate processing steps to provide cell-level or pseudo-cell expression estimates that 

can be treated as Gaussian distributed traits. Although our results indicate that this 

approximation is acceptable in practice and retains statistical calibration (Supplementary Fig. 

2.2), explicit modelling of count data could provide additional power benefits, in particular in 

the regime of lowly expressed genes. Finally, as datasets grow in size, future developments 

on the scalability may be warranted. While CellRegMap scales linearly in the number of cells 

already, the computations required to account for the relatedness component could be 

prohibitive when analysing very large datasets from thousands of individuals. Datasets of this 
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magnitude could become available through large data-integration efforts, for example via 

federated analysis envisioned in the single-cell eQTLGen consortium27. 

Methods  

A complete methods section, including definition of the CellRegModel, simulation strategies 

and data processing and analyses is available as Supplementary Methods. 

Code availability 
CellRegMap is available under an open-source license at: 

https://github.com/limix/CellRegMap/. 

  

Code to reproduce the specific analyses presented here can be accessed under: 

https://github.com/annacuomo/CellRegMap_analyses/.  
 

Data availability 

The datasets used are accessible at https://zenodo.org/record/3625024 (for the data from 1) 

and https://zenodo.org/record/4651413 (for the data from 3). 
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