
Articles
https://doi.org/10.1038/s41592-020-0766-3

1European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK. 2St Vincent’s Institute of Medical 
Research, Fitzroy, Victoria, Australia. 3Melbourne Integrative Genomics, School of Mathematics and Statistics/School of Biosciences, University of 
Melbourne, Parkville, Victoria, Australia. 4Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK. 5Department of Clinical Neurosciences, 
University of Cambridge, Cambridge, UK. 6Department of Physics, Cavendish Laboratory, Cambridge, UK. 7The Wellcome Trust/Cancer Research UK 
Gurdon Institute, University of Cambridge, Cambridge, UK. 8School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, 
Tel Aviv University, Tel Aviv, Israel. 9Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, 
Houston, TX, USA. 10The Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK. 11European Molecular 
Biology Laboratory, Genome Biology Unit, Heidelberg, Germany. 12Division of Computational Genomics and Systems Genetics, German Cancer Research 
Center, Heidelberg, Germany. 22These authors contributed equally: Davis J. McCarthy, Raghd Rostom, Yuanhua Huang. *A list of authors and their 
affiliations appears at the end of the paper. ✉e-mail: o.stegle@dkfz.de; st9@sanger.ac.uk

Aging, environment and genetic factors can affect mutational 
processes, thereby shaping the acquisition of somatic muta-
tions across the life span1–5. The maintenance and evolution 

of somatic mutations can result in clonal structure. Whole-genome 
and whole-exome DNA sequencing of bulk cell populations has 
been used to reconstruct the mutational processes that underlie 
somatic mutagenesis6–10 as well as clonal trees11–13. These strategies 
have been complemented by single-cell DNA sequencing (scDNA-
seq)14–16, which together with new computational approaches have 
helped to improve the reconstruction of clonal trees17–23. However, 
the functional differences between clones and their molecular  
phenotypes remain largely unknown.

An important step toward such functional insights would be 
access to genome-wide expression profiles of individual clones, 
yielding genotype–phenotype connections for clonal architec-
tures in tissues. Recent studies have explored mapping scRNA-seq  
profiles to clones with distinct copy number states in cancer, thus 
providing a first glimpse of clone-to-clone gene expression differ-
ences in disease24–27. Targeted genotyping strategies linking known 
mutations of interest to single-cell transcriptomes have proved use-
ful in particular settings, but remain limited by technical challenges 
and the requirement for strong previous information on informative 
variants28–30. Generally applicable methods for inferring the clone of 
origin of single cells to study genotype-transcriptome relationships 
have not yet been established.

To address this, we have developed cardelino, a computational 
method that exploits variant information in scRNA-seq reads to 

map cells to their clone of origin. We validate our model using 
simulations and assess its performance in comparison to existing 
methods. Finally, we demonstrate the use of cardelino by applying it 
to align single-cell transcriptome profiles to clonal substructure in 
five patients with melanoma cancer and 32 dermal fibroblast lines 
derived from healthy donors.

Results
Mapping single-cell transcriptomes to somatic clones with 
cardelino. Cardelino is a Bayesian method for integrating somatic 
clonal substructure and transcriptional heterogeneity within a pop-
ulation of cells. Briefly, cardelino models the patterns of expressed 
variant alleles in single cells using a clustering model, with clusters 
corresponding to somatic clones with (unknown) mutation states 
(Fig. 1a and Supplementary Fig. 1). Cardelino leverages imper-
fect but informative clonal tree configurations (guide clonal tree) 
obtained from complementary technologies, such as bulk or scDNA 
sequencing data, as prior information, thereby mitigating the spar-
sity of scRNA-seq variant coverage. Cardelino employs a flexible 
beta-binomial error model that accounts for stochastic dropout 
events as well as systematic allelic imbalance due to mono-allelic 
expression or regulatory factors.

Initially, we assess the accuracy of cardelino using simulated 
data that mimic clonal structures and properties of scRNA-seq 
as observed in real data (Methods and Supplementary Fig. 2). In 
addition to simulated variant profiles, we supply a guide clonal 
tree with a 10% error rate compared to the true simulated tree. 
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Alongside cardelino, we consider two alternative methods: Single 
Cell Genotyper (SCG21) and an implementation of Demuxlet31, a 
method designed for sample demultiplexing rather than assigning 
single-cell transcriptomic profiles to clones (‘clone assignment’ of 
cells, see Methods). Cardelino achieves high overall performance 

(area under precision recall curve, 0.965; Fig. 1b), outperforming 
both SCG and Demuxlet.

We explore the effect of key dataset characteristics on clone 
assignment, including the number of variants per clonal branch 
(Fig. 1c) and the expected number of variants with nonzero 
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Fig. 1 | Overview and validation of the cardelino model. a, A guide clonal tree can be reconstructed using DNA sequencing (for example, WES) data. 
Cardelino then performs probabilistic clustering of single-cell transcriptomes based on somatic variants detected in scRNA-seq reads, assigning cells to 
clones in the clonal tree. b–g, Benchmarking of cell assignment using simulated data. Default parameter values used in the simulations are denoted with 
an asterisk. b, Overall assignment performance for a dataset comprising 200 cells, simulated assuming a four-clone structure with ten variants per branch 
and nonzero read coverage for 20% of the variants and an error rate of 10% on the mutation states between the guide clonal tree and the true clonal 
tree (Methods). Shown is the fraction of true positive cell assignments (precision) as a function of the fraction of assigned cells (recall), when varying 
the threshold of the cell assignment probability. The black circle corresponds to the posterior cell assignment threshold of P = 0.5. c–g, Box plot of the 
area under precision-recall curve (that is, area under (AU) curves such as shown in b) across n = 50 repeated simulations, when varying the numbers of 
variants per clonal branch (c), the fraction of informative variants covered (that is, nonzero scRNA-seq read coverage) (d), the precision (that is, inverse 
variance) of allelic ratio across genes; lower precision means more genes with high allelic imbalance (e), the error rate of the mutation states in clone 
configuration matrix (f) and the fraction of variants that are wrongly assigned to branches (g). Standard box plots here show median, box covering the 25 
to 75% quartiles, whiskers extending up to 1.5 times the interquartile range above and below the box and outliers shown as points. For further details see 
Methods and Supplementary Note.
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scRNA-seq coverage per cell (Fig. 1d). As expected, the number 
of variants per clonal branch and their scRNA-seq read coverage 
are positively associated with the performance of all methods, with 
cardelino consistently outperforming alternatives, particularly in 
settings with low coverage. We further explore the effect of allelic 
imbalance on cell assignment (Fig. 1e), finding that cardelino is 
more robust than SCG and Demuxlet in regimes where a larger 
fraction of variants has high allelic imbalance: a source of error 
that is explicitly accounted for in cardelino. We also vary the error 
rate in the guide clonal tree, either by introducing uniform errors 
in the tree’s configuration matrix (Fig. 1f) or by swapping variants 
between branches in the tree (Fig. 1g). In both settings, cardelino 
is markedly more robust than Demuxlet, which assumes that the 
defined guide clonal tree is error-free. In contrast, cardelino retains 
high performance (area under precision recall curve, >0.96) for 
error rates as high as 25% (Fig. 1f,g).

We also consider two simplified variants of cardelino, one that 
performs de novo tree reconstruction without considering a guide 
clonal tree (cardelino-free), and a second that treats the guide tree 
as error-free (cardelino-fixed). These comparisons, further investi-
gating the parameters assessed in Fig. 1, confirm the benefits of the 
data-driven modeling of the guide clonal tree as prievious infor-
mation that is refined while assigning scRNA-seq profiles to clones 
(Supplementary Figs. 3 and 4). We also explore the effects of the 
number of clones and the tree topology, again finding that cardelino 
is robust to these parameters (Supplementary Fig. 4).

Cardelino assigns single-cell transcriptomes to clones in human  
dermal fibroblasts. Next, we apply cardelino to a dataset from 
32 human dermal fibroblast lines, allowing investigation of the 
clonal structure of skin samples from healthy donors. The lines 
were derived from nominally healthy donors that are part of the 
UK human induced pluripotent stem cell initiative (HipSci32; 
Supplementary Table 1). For each line, we generated deep whole-
exome sequencing data (WES) (median read coverage, 254), and 
Smart-seq2 scRNA-seq profiles using pools of three lines in each 
processing batch (Methods). We assayed between 30 and 107 
cells per line (median 61 cells after quality control (QC); median 
coverage, 484,000 reads and median genes observed, 11,108; see 
Supplementary Table 2).

Initially, we consider high-confidence somatic single-nucleotide 
variants (SNVs) identified from WES data (Methods), which reveals 
considerable variation in the total number of somatic SNVs, with 
41–612 variants per line (Fig. 2a; coverage of ≥20 reads, ≥3 obser-
vations of alternative allele, two-sided Fisher exact test false discov-
ery rate (FDR) ≤ 0.1; see Methods). Most SNVs can be attributed 
to the well-documented ultraviolet signature (COSMIC Signature 
7; primarily C to T mutations8), agreeing with expected muta-
tional patterns from ultraviolet exposure of skin tissues (Fig. 2a, 
Supplementary Fig. 5 and Methods). To explore whether the somatic 
SNVs confer a selective advantage, we used SubConalSelection at 
a per-line level33. Alternative methods such as dN/dS34 and meth-
ods using the SNV frequency distribution35,36 are not conclusive 
on this dataset, likely due to lack of statistical power resulting 
from the low number of mutations detected in our samples. The 
SubClonalSelection analysis identifies at least 12 lines with a clear 
fit to their selection model, suggesting positive selection of clonal 
subpopulations (Fig. 2a, Supplementary Fig. 6 and Methods). These 
patterns motivate the investigation of clone-specific variations in 
terms of transcriptome phenotypes.

Next, we reconstruct the clonal trees in each line using WES-
derived estimates of the variant allele frequency (VAF) of somatic 
variants that are also present in scRNA-seq reads (Methods). 
Canopy13 identifies two to four clones per line (Fig. 2a), which cor-
respond to subpopulations of cells that share (and are identified 
by) a common somatic mutation profile and includes a ‘base clone’ 

without somatic mutations (Methods). Following Canopy’s infer-
ence of clones, we use cardelino to map scRNA-seq profiles from 
1,732 cells (posterior probability >0.9 for clone assignment, from 
2,044 cells in total) to the underlying clones using the Canopy infer-
ence as guide clonal structure (Methods; for Canopy and cardelino 
output for all 32 lines see Supplementary File 1). Cardelino esti-
mates an error rate in the guide clone configuration of less than 
25% in most lines (median 18.6%), and assigns a large fraction 
of cells confidently (Supplementary Fig. 7). The model identifies 
four lines with an error rate between 35–46% and an outlier (vils, 
a line with few somatic variants), which demonstrates the use of 
the adaptive phylogeny error model employed by cardelino. We also 
run the four alternative methods on these 32 lines for comparison 
(Supplementary Fig. 8).

To assess the confidence of these cell assignments further, 
we consider simulated cells drawn from a clonal structure that 
matches the corresponding line, again finding that cardelino 
outperforms alternative methods (Supplementary Fig. 8). 
Additionally, we observe high concordance (R2 = 0.94) between 
the empirical cell-assignment rates and the expected values based 
on the corresponding simulation for the same line (Fig. 2b). Lines 
with clones that harbor fewer distinguishing variants are associ-
ated with lower assignment rates, at consistently high cell assign-
ment accuracy (median 0.965, mean 0.939; see Supplementary 
Fig. 9), indicating that the posterior probability of assignment is 
calibrated across different settings. We also consider the impact 
of technical features of scRNA-seq data on cell assignment, find-
ing no evidence of biased cell assignments (Supplementary Note). 
Consistent with these results, the clone prevalences estimated 
from Canopy and the fractions of cells assigned to the corre-
sponding clones are qualitatively concordant (adjusted R2 = 0.53), 
providing additional confidence in the cardelino cell assignments, 
while highlighting the value of cardelino’s ability to update input 
clone structures using single-cell variant information (Fig. 2c and 
Supplementary Fig. 10).

Differences in gene expression between clones suggest pheno-
typic impact of somatic variants. Initially, we focus on the fibro-
blast line with the largest number of somatic SNVs (joxm; white 
female aged 45–49; Fig. 2a), with 612 somatic SNVs (112 detected 
both in WES and scRNA-seq) and 79 QC-passing cells, 99% of 
which could be assigned to one of three clones (Fig. 3a). Principal 
component analysis of the scRNA-seq profiles reveals global tran-
scriptome substructure aligned with the somatic clones identified in 
this cell population (Fig. 3b). Additionally, we observe differences in 
the fraction of cells in different cell-cycle stages, where clone 1 has 
the fewest cells in G1, and the largest fraction in S and G2/M (Fig. 3b,  
inset plot and Supplementary Note), suggesting that clone 1 is pro-
liferating most rapidly. Next, we consider differential expression 
(DE) analysis of individual genes between the two largest clones 
(clone 1, 46 cells versus clone 2, 25 cells), which identifies 901 DE 
genes (two-sided edgeR QL F-test; FDR < 0.1; 549 at FDR < 0.05; 
Fig. 3c). Consistent with the cell-cycle stage assignment, we observe 
that genes that are overexpressed in clone 1 are enriched for pro-
cesses associated with the cell cycle and cell proliferation37–40 (gene 
sets E2F targets, G2/M checkpoint, mitotic spindle; two-sided cam-
era test; FDR < 0.1; see Fig. 3d).

Cell cycle and proliferation pathways frequently vary between 
clones. To quantify the overall effect of somatic substructure on 
gene expression variation across the full dataset, we fit a linear 
mixed model to individual genes (Methods), partitioning gene 
expression variation into a line component, a clone component, 
technical batch (that is, processing plate), cellular detection rate 
(proportion of genes with nonzero expression per cell) and residual 
noise. While globally, the line component explains a larger fraction 
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of the expression variance than clone (median 5.5% for line, 0.5% 
for clone), this analysis identifies 194 genes with a substantial clone 
component (>5% variance explained by clone, see Fig. 4a). Even 
larger clone effects are observed when estimating the clone com-
ponent separately in each line (331–2,162 genes with >5% variance 
explained by clone; median 825 genes; see Fig. 4b), indicating that 
there are line-specific differences in the set of genes that vary with 
clonal structure.

Next, we assess transcriptomic differences between any pair of 
clones for each line by testing for DE genes (considering 31 lines with 
at least 15 cells for DE testing, Methods). This approach identifies 
up to 1,199 DE genes per line (FDR < 0.1, edgeR QL F-test). Most, 
61%, of the total set of 5,289 unique DE genes, are detected in two or 
more lines, and 39% are detected in at least three lines. Comparison 
to data with permuted gene labels demonstrates an excess of recur-
rently differentially expressed genes compared to chance expectation  
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threshold posterior P > 0.5). Color denotes the average number of informative variants across clonal branches per line. The line of best fit from a linear 
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(Fig. 4c, P < 0.001, 1,000 permutations; see Methods). We also iden-
tify a small number of genes that contain somatic variants in a sub-
set of clones, resulting in DE between the base clone (clone 1, no 
somatic variants) and mutated clones (Supplementary Fig. 11).

To align the transcriptomic changes across lines, we assessed 
shared patterns of enriched pathways (Methods). Of 31 lines, 19 
show significant enrichment for at least one MSigDB Hallmark gene 
set (FDR < 0.05, camera; see Methods), with key gene sets related to 
cell cycle and growth enriched recurrently (Fig. 4d). Furthermore, 
the directionality of the expression changes of the gene sets for 
the E2F targets, G2M checkpoint, mitotic spindle and MYC target 
pathways are highly coordinated (Fig. 4d), despite limited overlap 
of individual genes between the gene sets (Supplementary Fig. 12). 

A second cluster of pathways that vary in a coordinated fashion, 
related to epithelial-mesenchymal transition and apical junction, 
was anticorrelated with expression changes in cell cycle and prolifer-
ation pathways (Fig. 4d). There is substantial heterogeneity in gene 
expression programs across clones within individual lines, where 
we observe that the enrichment of pathways often differs between 
different pairs of clones (Fig. 4e, all lines shown in Supplementary 
Fig. 12). Overall, a picture of substantial complexity in clonal gene 
expression emerges, highlighting the variability in effects of somatic 
variants on the phenotypic behavior of cells.

Cardelino assigns single-cell transcriptomes to clones in human 
melanoma samples. Finally, we consider a second dataset and apply 
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Fig. 4 | Signatures of transcriptomic clone-to-clone variation across 31 lines. a, Violin and box plots show the percentage of variance explained by clone, 
line, experimental plate and cellular detection (Cell. det.) rate for n = 4,998 highly variable genes, estimated using a linear mixed model (Methods).  
b, Percentage of gene expression variance explained by clone when fitting a linear mixed model for each individual line for the 400 genes with the most 
variance explained by clone per line (Methods). Individual lines correspond to cell lines (donors), with joxm highlighted in black and the median across 
all lines in red. c, The number of recurrently differentially expressed genes between any pair of clones (FDR < 0.1; edgeR QL F-test, n ranges from 29 to 
107 cells across lines), detected in at least 1–12 lines, with box plots showing results expected by chance (using n = 1,000 permutations). d, Left panel, 
heatmap showing pairwise correlation coefficients (Spearman’s R, only nominal significant correlations shown, P < 0.05) between signed P values of 
gene set enrichment (two-sided camera test) across n = 32 lines, based on differentially expressed genes (n ranges from 2 to 1,113 DE genes across lines) 
between clones. Shown are the 17 most frequently enriched MSigDB Hallmark gene sets. Right panel, number of lines in which each gene set is found to 
be significantly enriched (same test as for the left panel, FDR < 0.05). e, Heatmap depicting signed P values of gene set enrichments (two-sided camera 
test) for eight Hallmark gene sets in n = 19 lines. Dots denote significant enrichments (FDR < 0.05). Violin and box plots in a and c are standard: violin plots 
show data density with default bandwidth calculation and box plots show median, box covering 25 to 75% quartiles, whiskers extending up to 1.5 times the 
interquartile range above and below the box and outliers shown as points.
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cardelino to 1,290 single cells from five patients with metastatic 
melanoma for which both somatic variant calls from WES data and 
scRNA-seq data are available41. As for the fibroblast data, we infer 
clonal trees using Canopy and assign cells to clones using cardelino 
(Methods and Supplementary Note). Cardelino is able to assign 
most of the cells with high-confidence (Supplementary Note). As 
expected, across confidently assigned immune cells (defined using 
marker genes from the original study), we find 96–100% assigned 
to the base clone (Supplementary Fig. 13a; see Supplementary 
Note for more details and results). Between 0 and 21% of mela-
noma cells (median 7%) are assigned to the base clone, with the 
rest assigned to other clones harboring somatic variants. We find 
hundreds of differentially expressed genes across all pairwise com-
parisons between clones (edgeR two-sided QL F-test, FDR < 0.05; 
Supplementary Note). Consistent with the results observed on the 
fibroblast data, we observe patterns of DE related to cell prolifera-
tion. In three of the five patients with melanoma we observe at least 
five pathways to be significantly enriched between clones (two-
sided camera test, FDR < 0.05; see Methods and Supplementary 
Note), with E2F targets, MTORC1 signaling, mitotic spindle and 
G2M checkpoint among the Hallmark gene sets significantly 
enriched in at least two patients (Supplementary Fig. 13b). These 
gene sets are also recurrently significantly enriched when restrict-
ing the analysis only to melanoma cells (Supplementary Fig. 13c). 
Collectively, these results show that cardelino is able to distinguish 
between tumor and nontumor cells with very high accuracy, and 
also to differentiate between tumor clones on the basis of distinct 
SNVs expressed in scRNA-seq reads.

Discussion
Here we develop and apply a computational approach for integrating 
somatic clonal structure with scRNA-seq data. Cardelino leverages 
a clonal tree inferred from WES or scDNA-seq as prior information 
to then assign single-cell transcriptomes to individual clones. This 
assignment step is conceptually related to existing demultiplexing 
methods for single-cell transcriptomes from multiple genetically 
distinct individuals31. However, cardelino addresses a substantially 
more challenging problem: to distinguish cells from the same indi-
vidual based on the typically small number of somatic variants (for 
example, dozens) that segregate between clones in a population of 
cells. Cardelino simultaneously infers the clonal tree configuration 
and the clone of origin of individual cells based on sparse vari-
ant alleles observed in scRNA-seq data, while taking advantage of 
imperfect clonal trees derived from complementary assays such as 
bulk exome-seq data.

Inferring clonal trees from any type of data remains a challeng-
ing task and existing clonal inference methods produce clonal trees 
with substantial uncertainty. Consequently, the ability of cardelino 
to adapt these trees in the light of variant information from 
scRNA-seq is a key strength of the method. Our results show that 
cardelino outperforms methods that consider an input clonal tree 
as fixed and error-free (Demuxlet, cardelino-fixed) and those that 
do not use any guide tree at all (SCG, cardelino-free). Comparing 
cardelino and cardelino-free highlights complementary strengths 
and use cases. Where external data for inference of the clonal tree 
exist (such as bulk exome or scDNA-seq), cardelino can be more 
accurate than cardelino-free. In settings where such data are not 
available, cardelino-free offers de novo clonal inference and assign-
ment with competitive accuracy. Currently, cardelino only consid-
ers SNV data; future development could incorporate information 
on copy number and structural variation into the model to improve 
clonal tree inference and cell assignment. Cardelino also currently 
requires somatic variants to have been called using bulk or scDNA-
seq data, which limits its use to settings where both DNA-seq and 
scRNA-seq data are available. Future development of an accurate 
somatic variant caller for scRNA-seq data would relax this need for 

complementary DNA-seq data and allow cardelino to be applied in 
many more settings.

Harnessing transcriptomic phenotypic information for cells 
assigned to clones in 32 fibroblast lines, we identify substan-
tial and convergent gene expression differences between clones 
across lines, which are enriched for pathways related to prolifera-
tion and the cell cycle. Analysis of clonal evolutionary dynamics 
using somatic VAF distributions from WES data reveals evidence 
for positive selection of clones in 12 of 32 lines, consistent with 
the results from our gene expression analysis. This surprising 
result in healthy tissue suggests inter-clonal phenotypic variation 
with important functional consequences, a result that will, how-
ever, require independent experimental validation. Additionally, 
the clonal dynamics in fibroblast cell lines may deviate from the 
in  vivo situation in primary fibroblast tissue. Nevertheless, it is 
intriguing to speculate about potential mechanisms driving these 
inter-clonal phenotypic differences, which might stem solely from 
observed somatic variants, could involve unobserved variants, or 
could arise through indirect mechanisms involving (post)tran-
scriptional regulation or epigenetic differences. Further work will 
be needed to identify drivers of molecular differences between 
clones across biological systems.

The cardelino method is general and can exploit available infor-
mation on clonal substructure inferred from bulk or scDNA-seq 
data or other sources. If no external information on clonal structure 
is available, the cardelino-free method simultaneously infers clonal 
structure and assigns cells to clones with high accuracy. Cardelino’s 
inference procedure is computationally efficient, so will scale to 
multi-site samples and many thousands of cells. Thus, cardelino will 
be applicable to high-resolution studies of clonal gene expression 
in both healthy and malignant cell populations, as well as in vitro 
models. Although not explored here, the cardelino model may also 
be effective for other single-cell ‘omics assays that capture somatic 
variant information, such as those profiling chromatin accessibil-
ity42 or methylation43,44.
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Methods
The cardelino model. Given a list of N common variants and an estimated number 
of clones, K, the cardelino model jointly infers the clonal tree configuration and 
assigns single cells to one of the K clones by modeling the expressed alleles with a 
probabilistic clustering model (see graphical model in Supplementary Fig. 1).

The clonal tree configuration is represented as an N × K binary matrix C, with 
entries ci,k = 1 if somatic variant i is present in clone k and ci,k = 0 otherwise. Entries 
in matrix C are latent variables (unobserved) and can be inferred by incorporating 
a prior (an observed clone configuration matrix Ω with an appropriate relaxation 
(or error) rate ξ 2 ½0; 1Þ

I
). The guide matrix Ω (with entries Ωi,k ∈ {0,1}) can be 

seen as an observed analogous matrix of C, which is considered informative but 
imperfect with error ξ. Specifically, we model entries in C as

P ci;k ¼ 1jΩi;k; ξ
� �

¼ ξ 1�Ωi;kð Þ 1� ξð ÞΩi;k ð1Þ

This indicates that if Ωi,k = 1, then ci,k = 1 with probability 1 − ξ and ci,k = 1 
with probability ξ. The special case ξ = 0, corresponds to Ω being a perfect 
representation of the clonal tree configuration; that is, C = Ω. In this study, Ω is 
obtained from bulk exome sequencing data source using Canopy13, which also 
yields the estimate of K. For the prior of ξ, we introduce a conjugate prior beta 
distribution, with hyper-parameter vector κ: P ξjκð Þ ¼ Beta ξ; κ0; κ1ð Þ

I
. By default, 

we set (κ0,κ1) = (1,9). The beta distribution is in format Beta(α, β) here and below.
Let Ij 2 1; ¼ ;Kf g

I
 denote cell identity, that is the clone to which cell j is 

assigned. Then Ij is a categorical variable with a (prior) probability distribution 

F ¼ f1; ¼ ; fKð Þ
I

, with elements fk 2 0; 1½ 
I

 satisfying 
PK
k¼1

fk ¼ 1

I

. One possible 
specification of F could be the clonal fraction resulting from Canopy13 with each 
fk representing the relative prevalence of clone k. However, to avoid biasing cell 
assignment toward highly prevalent clones for cells with little read information, we 
assume an uninformative uniform prior:

P Ij ¼ kjF
� �

¼ 1=K for all k: ð2Þ

Let M be the number of cells. For each cell and variant that segregates between 
clones, we extract the number of sequencing reads that support the reference  
allele (reference read count) and the alternative allele (alternative read count).  
The core part of the cardelino model is to model the alternative read count using a 
binomial model.

Specifically, let ai,j and di,j denote, respectively, the alternative and total read 
count for variant i in cell j, where total read count is the sum of reference and 
alternative read counts. By definition, both ai,j and di,j are nonnegative integers, 
collected in two N × M matrices A and D, respectively. We assume that ai,j follows 
a binomial distribution Binom(n,p), where the ‘number of trials’ n represents the 
total number of observed reads (that is, n = di,j) and ‘success’ is defined as observing 
an alternative-allele read.

Thus, the ‘success probability’ p corresponds to the probability that an observed 
read is from alternative allele, in theory equivalent to the fraction of alternative 
allele among the two alleles in expression. To this end, we parameterize p for two 
different settings: p = θ0 for homozygous reference alleles (variant absence, ci,k = 0 
and p = θi for heterozygous variants i (variant present, ci,k = 1). Note that when 
ci,k = 0, that is, a given variant is not present in clone k, we model the observed 
number of (false positive) reads that carry the variant using a common parameter 
value θ0, which encodes the expected frequency of sequencing errors or errors in 
the clonal tree configuration. In contrast for ci,k = 1, that is, if the variant is present 
in the clone, the binomial rate denotes the expected fraction of reads that carry 
the mutation. In the absence of assay noise and assuming heterozygous sequence 
variants this rate would be 0.5. To account for the gene-specific differences in 
allelic imbalance, which causes the probability of observing alternative reads to 
vary, we fit a gene-specific success probability. Denote the collection of all binomial 
success probability parameters as θ = (θ0,θ1), where θ1 = (θ1,…,θN). Therefore, the 
binomial model for the alternative read count can be written as

P ai;jjdi;j; Ij ¼ k; ci;k; θ
� 

¼
Binom ai;jjdi;j; θ0

� 
if ci;k ¼ 0

Binom ai;jjdi;j; θi
� 

if ci;k ¼ 1

(
: ð3Þ

The prior distribution for parameters θ is taken as a beta distribution with 
hyper-parameters v (see equations (10) and (11) in the Supplementary Note 
for details of P θjνð Þ

I
). To ensure sensible prior distributions, we estimate ν 

from scRNA-seq data at known germline heterozygous variants for highly 
expressed genes (Supplementary Note). For example, in the fibroblast dataset 
considered here, this approach yield prior parameters of Beta(0.2,99.8) for θ0 and 
Beta(0.45,0.55) for θi; i 2 1; ¼ ;Nf g:

IThe posterior distribution of the clonal tree configuration C, cell assignment 
I ¼ I1; ¼ ; IMð Þ
I

, parameters θ and ξ then follows as

P C; I; ξ; θjA;D;Ω;Fð Þ / P AjD; I;C; θð ÞP CjΩ; ξð ÞP IjFð ÞP ξjκð ÞP θjνð Þ; ð4Þ

where P AjD; I;C; θð Þ ¼
Q

i

Q
j P ai;jjdi;j; Ij ¼ k; ci;k; θ
� 

I
 is the likelihood across all 

cells and variants (as defined in equation (3)).

When conditioning on the state of the latent variables C and θ, the posterior 
probability of cell j coming from clone k follows as

P Ij ¼ kjaj; dj;C; F; θ
� 

¼ P Ij ¼ kjF
� Q

i P ai;jjdi;j; Ij ¼ k; ci;k; θ
� 

PK
t¼1 P Ij ¼ tjF

� Q
i P ai;jjdi;j; Ij ¼ t; ci;k; θ
�  : ð5Þ

Following a Bayesian treatment of the model, we account for the uncertainty 
of these two variables C and θ by marginalizing them out from the full posterior 
(equation (4)) using Gibbs sampling. See the Supplementary Note for details. In 
addition to the full model, we also provide implementations for two (simplified) 
variants of cardelino: cardelino-free without any informative clone configuration 
Ω and cardelino-fixed assuming that the clone prior is fixed and error-free (ξ = 0). 
Despite the fully Bayesian approach, cardelino is computationally efficient, 
enabling the assignment of hundreds of cells within minutes using a single 
compute node. These methods will comfortably scale to datasets up to tens of 
thousands of cells.

Alternative methods. Aside from cardelino, two alternative methods with distinct 
strategies are considered: Demuxlet that assumes the guide clonal tree is perfect31, 
and SCG that does not take any guide clonal tree21.

The software implementation of Demuxlet requires a BAM file as input to 
obtain an empirical sequencing error rate from the sequencing quality score, which 
is not compatible with our simulated allelic read count matrices. Therefore, we 
re-implemented the core model of Demuxlet in its original paper31. We set the 
sequencing error rate to 0.003 for all reads, by matching our simulation settings. 
We also compared our implementation to the original implementation by assessing 
the ability to demultiplex pooled scRNA-seq data, finding perfectly concordance 
(Supplementary Note).

For SCG, the input is a matrix of categorical values denoting the measured 
genotype states for each variant in each cell. Here, our raw observation is the 
alternative and reference allelic read counts, hence we need to transform the 
observed raw counts into genotype states. As the false positive rate is mostly very 
low (that is, observing an alternative allelic read from homozygous reference 
genotype), we simply take the genotype gij for variant i in cell j as 1 (that is, 
heterozygous) if there is any alternative allelic read (that is, aij > 0), otherwise we 
take gij = 0 (that is, homozygous reference). In case there is no expression, we give a 
missing value gij = 3. For running SCG, we used the run_singlet_model mode and 
configured the hyper-parameters as follows: kappa_prior = 1, gamma_prior = [[30, 
0.3], [4, 4]] and state_prior = [1, 1], which match our simulation settings. Note, we 
ran SCG from a Python wrap function to fix the first clone as a base clone; that is, 
with no mutations.

The inferred clone labels may not be best aligned to the simulated 
clones, especially for SCG and cardelino-free that do not use any guide clone 
configuration, hence before evaluation we aligned the inferred clones to the 
simulated truth (or the input guide clones) by reordering the inferred clones  
to reach the lowest number of conflicting mutation states between two 
configuration matrices.

Cell culture. Dermal fibroblasts, derived from skin-punch samples from the 
shoulder of 32 donors (white British, age range 30–75), were obtained from 
the HipSci project (http://hipsci.org). Following thawing, fibroblasts were 
cultured in supplemented DMEM (high glucose, pyruvate, GlutaMAX (Life 
Technologies/10569-010), with 10% FBS (Lab Tech/FB-1001) and 1% penicillin-
streptomycin (Life Technologies/15140122) added. Then, 18 h before collection, 
cells were trypsinized (Life Technologies/25300054), counted and seeded at a 
density of 100,000 cells per well (six-well plate).

Cell pooling, capture and full-length transcript scRNA sequencing. Cells were 
washed with PBS, trypsinized and resuspended in PBS (Gibco/14190-144) +0.1% 
DAPI (AppliChem/A1001). Cells from three lines were pooled and consequently 
sorted on a Becton Dickinson INFLUX machine into plates containing 2 μl per well 
lysis buffer. Single cells were sorted individually (using FSC-W versus FSC-H), and 
apoptotic cells were excluded using DAPI. Cells from each three-plex cell pool were 
sorted across four 96-well plates. Reverse transcription and cDNA amplification 
was performed according to the Smart-seq2 protocol45, and library preparation was 
performed using an Illumina Nextera kit. Samples were sequenced using paired-
end 75 base pair reads on an Illumina HiSeq 2500 machine.

Bulk WES data and somatic variant calling. We obtained bulk WES data from 
HipSci fibroblast (median read coverage, 254) and derived iPS cell lines (median 
read coverage, 79) released by the HipSci project32,46. Sequenced reads were aligned 
to the GRCh37 build of the human reference genome47 using bwa-mem48. To 
identify single-nucleotide somatic variant sites in the fibroblast lines, we compared 
VAFs for putative somatic variants in the fibroblast and matching iPS samples, 
using the iPS line as the reference ‘normal’ sample in the absence of true germline 
samples for these lines. As the iPS lines were derived from their matching fibroblast 
lines, this comparison flips the usual tumor-normal comparison exploited in 
standard somatic mutation calling pipelines. As such, somatic variants present in 
a fibroblast sample are also expected to be present in the matching iPS sample, 

NATuRe MeTHODS | www.nature.com/naturemethods

http://hipsci.org
http://www.nature.com/naturemethods


ArticlesNATuRe MeTHoDs ArticlesNATuRe MeTHoDs

violating key assumptions of established somatic variant callers. Thus, we apply a 
variant calling approach specific to our experimental setting here.

For each exome sample, we searched for sites with a nonreference base in the 
read pileup using bcftools/mpileup49. In the initial prefiltering we retained sites with 
a per-sample coverage of at least 20 reads, at least three alternate reads in either 
fibroblast or iPS samples and an allele frequency less than 5% in the ExAC browser50 
and 1,000 Genomes data51. A two-sided Fisher exact test52 implemented in bcftools/
ad-bias was then used to identify sites with significantly different VAFs in the exome 
data between fibroblast and iPS samples for a given line (Benjamini–Hochberg 
FDR < 10%). Sites were removed if any of the following conditions held: VAF < 1% 
or VAF > 45% in high-coverage fibroblast exome data; fewer than two reads 
supporting the alternative allele in the fibroblast sample; VAF > 80% in iPS data (to 
filter out potential homozygous alternative mutations); neither the iPS VAF nor 
fibroblast VAF was below 45% (to filter out variants with a ‘significant’ difference in 
VAF but are more likely to be germline than somatic variants). We further filtered 
sites to require uniqueness of sites across donors as it is highly unlikely to observe 
the same point mutation in more than one individual, so such sites almost certainly 
represent technical artifacts. Overall, this somatic variant calling approach aims 
to achieve higher specificity at the cost of lower sensitivity, so is conservative and 
should limit the inclusion of false positive somatic variants in our callset.

We used bcftools/cnv to call copy number aberrations in fibroblasts. Calls  
were filtered to exclude copy number aberrations with a quality score less than  
two, deletions with fewer than ten markers and duplications with fewer than  
ten heterozygous markers. We also excluded any calls that were smaller  
than 200 kilobases.

Estimation of mutational signatures. Signature exposures were estimated using the 
sigfit package53, providing the COSMIC 30 signatures as a reference8, and with 
a highest posterior density threshold of 0.9. Signatures were determined to be 
significant when the highest posterior density did not overlap zero. Two signatures 
(7 and 11) were significant in two or more donors.

Identification of selection dynamics. Several methods have been developed to detect 
deviations from neutral growth in cell populations33–36. Methods such as dN/
dS or models assessing the fit of neutral models to the data need a high number 
of mutations to determine selection/neutrality. Given the relatively low number 
of mutations found in the donors in this study, these models are not applicable. 
We used the package SubClonalSelection (https://github.com/marcjwilliams1/
SubClonalSelection.jl) in Julia v.0.6.2, which works with a low number of 
mutations (>100 mutations33). The package simulates the fit of a neutral and a 
selection model to the allele frequency distribution, and returns a probability for 
the selection model to fit the data best.

At small allele frequencies the resolution of the allele frequency distribution is 
limited by the sequencing depth. We chose a conservative lower resolution limit of 
fmin = 0.05 (ref. 54). At the upper end of the allele frequency distribution we chose a 
cut-off at fmax = 0.45 to account for ploidy (=2). For the classification of the donors, 
we introduced cut-offs on the resulting selection probability of the algorithm. 
Donors with a selection probability below 0.3 are classified as ‘neutral’, above 0.7 as 
‘selected’. Donors that are neither ‘selected’ nor ‘neutral’ remain ‘undetermined’. See 
Fig. 3a and Supplementary Fig. 8 for the results of the classification and fit of the 
models to the data. SubClonalSelection assumes that the total population of cells is 
expanding exponentially and unfortunately does not allow to check for alternative 
growth hypotheses. However, we expect the growth dynamics not to have a big 
impact on the VAF distributions (in the extreme case of a constant population 
the VAF decay dynamics change to 1/f from 1/f2 but still shows peaks for selected 
clones; compare Fig. 1 in ref. 33). Hence, the comparison of the selection model 
versus the neutral model should lead to meaningful results.

Single-cell gene expression quantification and quality control. Raw scRNA-
seq data in CRAM format was converted to FASTQ format with samtools (v.1.5), 
before reads were adapter- and quality-trimmed with TrimGalore! (github.com/
FelixKrueger/TrimGalore)55. We quantified transcript-level expression using 
Ensembl v.75 transcripts56 by supplying trimmed reads to Salmon v.0.8.2 and using 
the ‘–seqBias’, ‘–gcBias’ and ‘VBOpt’ options57. Transcript-level expression values 
were summarized at gene level (estimated counts) and quality control of scRNA-
seq data was done with the scater package58 and normalization with the scran 
package59,60. Cells were retained for downstream analyses if they had at least 50,000 
counts from endogenous genes, at least 5,000 genes with nonzero expression, less 
than 90% of counts from the 100 most-expressed genes in the cell, less than 20% 
of counts from ERCC spike-in sequences and a Salmon mapping rate of at least 
40% (Supplementary Note). This filtering approach retains 63.7% of assayed cells. 
We used a pooled experimental design, whereby cells from three individual cell 
lines were pooled before scRNA-sequencing. Deconvolution of cells to donor cell 
lines was subsequently conducted using common genetic variants as natural cell 
barcodes (Supplementary Note), resulting in 2,338 QC-passing, donor-assigned 
cells for clonal analysis.

Clonal inference. We inferred the clonal structure of the fibroblast cell population 
for each of the 32 lines (donors) using Canopy13. We used read counts for the 

variant allele and total read counts at filtered somatic variant sites from high-
coverage WES data from the fibroblast samples as input to Canopy. In addition 
to the variant filtering described above, input sites were further filtered for tree 
inference to those that had nonzero read coverage in at least one cell assigned to 
the corresponding line. We used the BIC model selection method in Canopy to 
choose the optimal number of clones per line. Here, for each of the 32 lines, we 
considered the highest-likelihood clonal tree produced by Canopy, along with the 
estimated prevalence of each clone and the set of somatic variants tagging each 
clone as the given clonal tree for cell-clone assignment.

Cell-clone assignment. For cell-clone assignment we required the read counts 
supporting reference and alternative alleles at somatic variant sites. We used the 
bcftools v.1.7 mpileup and call methods to call variants at somatic variant sites 
derived from bulk whole-exome data, as described above, for all confidently 
assigned cells for each given line. Variant sites were filtered to retain variants with 
more than three reads observed across all cells for the line and quality greater 
than 20. We retained cells with at least two somatic variants with nonzero read 
coverage (2,044 cells across 32 lines). From the filtered VCF output of bcftools we 
obtained the number of reads supporting the alternative allele and the total read 
coverage for each somatic variant site with more than three reads covering the 
site, in total, across all the line’s cells. In general, read coverage of somatic variant 
sites in scRNA-seq data is sparse, with over 80% of sites for a given cell having no 
overlapping reads. We used the scRNA-seq read counts at the line’s somatic variant 
sites to assign QC-passing cells from the line to clones using the clone_id function 
in the cardelino R package.

Variance component, DE and pathway analysis. Gene expression analyses were 
carried out in exactly the same way for the fibroblast and melanoma datasets, 
as follows. Expression analyses between clones required further filtering of cells 
for each line (or patient in the melanoma data; below we will use ‘line’ to denote 
either line or patient as appropriate). Analyses were conducted using cells that 
passed the following filtering procedure for each line: (1) clones identified in the 
line were retained if at least three cells were confidently assigned to the clone; and 
(2) cells were retained if they were confidently assigned to a retained clone. Lines 
were retained for DE testing if they had at least 15 cells assigned to retained clones, 
allowing us to conduct expression analyses for 31 out of the 32 fibroblast lines (all 
except vils). All patients with melanoma were retained for expression analyses.

Expression variance across cells is decomposed into multiple components in 
a linear mixed model, including cellular detection rate (proportion of genes with 
nonzero expression per cell) as a fixed effect and plate (that is, experimental batch), 
donor (that is, line; only when combining cells across all donors) and clone (nested 
within donor for combined-donor analysis) as random effects. We fit the linear 
mixed model on a per-gene basis using the variancePartition R package61.

Differential gene expression testing was conducted using the quasi-likelihood 
F-test method62 in the edgeR package63,64 as recommended by Soneson and 
Robinson60. To test for differences in expression between cells assigned to different 
clones in a line, we fit a linear model for single-cell gene expression with cellular 
detection rate (proportion of QC-filtered genes expressed in a cell; numeric value), 
plate on which the cell was processed (a factor) and assigned clone (a factor) as 
predictor variables. The quasi-likelihood F-test was used to identify genes with: (1) 
any difference in average expression level between clones (analogous to analysis 
of variance), and (2) differences in average expression between all pairs of clones 
(pairwise contrasts). We considered 10,876 genes (15,649 genes in the melanoma 
data) that were sufficiently expressed (an average count >1 across cells in all lines) 
to test for DE.

To test for significance of overlap of DE genes across donors, we sampled sets of 
genes without replacement the same size as the number of DE genes (FDR < 10%) 
for each line. For each permutation set, we then computed the number of sampled 
genes shared between donors. We repeated this procedure 1,000 times to obtain 
distributions for the number of DE genes shared by multiple donors if shared genes 
were obtained purely by chance.

Gene set enrichment (pathway) analyses were conducted using the camera61 
method in the limma package65,66. Using log2-fold-change test statistics for 10,876 
genes (15,649 genes in the melanoma data) for pairwise contrasts between clones 
from the edgeR models above as input, we applied camera to test for enrichment 
for the 50 Hallmark gene sets from MSigDB, the Molecular Signatures Database62. 
For all DE and pathway analyses we adjusted for multiple testing by estimating 
the FDR using independent hypothesis weighting63, as implemented in the IHW 
package, with average gene expression supplied as the independent covariate.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
scRNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI 
(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-7167. WES data is 
available through the HipSci portal (www.hipsci.org). The lines used in this study 
have the identifiers: euts, fawm, feec, fikt, garx, gesg, heja, hipn, ieki, joxm, kuco, 
laey, lexy, naju, nusw, oaaz, oilg, pipw, puie, qayj, qolg, qonc, rozh, sehl, ualf, vass, 
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vils, vuna, wahn, wetu, xugn, zoxy. Metadata, processed data and large results files 
are available at https://doi.org/10.5281/zenodo.1403510

Code availability
The cardelino methods are implemented in an open-source, publicly available  
R package (github.com/single-cell-genetics/cardelino). The code used to process 
and analyse the data is available (github.com/davismcc/fibroblast-clonality), 
with a reproducible workflow implemented in Snakemake64. Descriptions of 
how to reproduce the data processing and analysis workflows, with html output 
showing code and figures presented in this paper, are available at davismcc.github.
io/fibroblast-clonality. Docker images providing the computing environment 
and software used for data processing (hub.docker.com/r/davismcc/fibroblast-
clonality/) and data analyses in R (hub.docker.com/r/davismcc/r-singlecell-img/) 
are publicly available.
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